我正在使用python来做一些贝叶斯统计。我已经在python和Fortran 95中编写了它.Fortran代码更快...就像100倍。我期望Fortran更快,但我真的希望通过使用numpy我可以获得python代码接近,可能在2的因素之内。我已经分析了python代码,看起来大部分时间用于执行以下操作:
scipy.stats.rvs:从分发中随机抽取。我这样做~19000次,总时间为3.552秒
numpy.slogdet:计算矩阵行列式的对数。我这样做~10,000,总共需要2.48秒
numpy.solve:解决一个线性系统:我把这个例程称为〜10,000次,总时间为2.557秒
总的来说,我的代码运行时间约为11秒,而我的fortran代码运行时间为.092秒。你在开玩笑吗?我真的不想在我对python的期望中变得不现实,我当然不希望我的python代码能够像Fortran一样快......但是要慢一点> 100 .. Python必须能做得更好。万一你好奇,这是我的探查器的完整输出:(我不知道为什么它把文本分成几个块)
1290611 function calls in 11.296 CPU seconds
Ordered by: internal time, function name
ncalls tottime percall cumtime percall filename:lineno(function)
18973 0.864 0.000 3.552 0.000 /usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:484(rvs)
9976 0.819 0.000 2.480 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:1559(slogdet)
9976 0.627 0.000 6.659 0.001 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:77(evaluate_posterior)
9384 0.591 0.000 0.753 0.000 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:39(construct_R_matrix)
77852 0.533 0.000 0.533 0.000 :0(array)
37946 0.520 0.000 1.489 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:32(_wrapit)
77851 0.423 0.000 0.956 0.000 /usr/lib64/python2.6/site-packages/numpy/core/numeric.py:216(asarray)
37946 0.360 0.000 0.360 0.000 :0(all)
9976 0.335 0.000 2.557 0.000 /usr/lib64/python2.6/sitepackages/scipy/linalg/basic.py:23(solve)
107799 0.322 0.000 0.322 0.000 :0(len)
109740 0.301 0.000 0.301 0.000 :0(issubclass)
28357 0.294 0.000 0.294 0.000 :0(prod)
9976 0.287 0.000 0.957 0.000 /usr/lib64/python2.6/site-packages/scipy/linalg/lapack.py:45(find_best_lapack_type)
1 0.282 0.282 11.294 11.294 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:199(get_rho_lambda_draws)
9976 0.269 0.000 1.386 0.000 /usr/lib64/python2.6/site-packages/scipy/linalg/lapack.py:60(get_lapack_funcs)
19952 0.263 0.000 0.476 0.000 /usr/lib64/python2.6/site-packages/scipy/linalg/lapack.py:23(cast_to_lapack_prefix)
19952 0.235 0.000 0.669 0.000 /usr/lib64/python2.6/site-packages/numpy/lib/function_base.py:483(asarray_chkfinite)
66833 0.212 0.000 0.212 0.000 :0(log)
18973 0.207 0.000 1.054 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1427(product)
29931 0.205 0.000 0.205 0.000 :0(reduce)
28949 0.187 0.000 0.856 0.000 :0(map)
9976 0.175 0.000 0.175 0.000 :0(dot)
47922 0.163 0.000 0.163 0.000 :0(getattr)
9976 0.157 0.000 0.206 0.000 /usr/lib64/python2.6/site-packages/numpy/lib/twodim_base.py:169(eye)
19952 0.154 0.000 0.271 0.000 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:32(loggbeta)
18973 0.151 0.000 0.793 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1548(all)
19953 0.146 0.000 0.146 0.000 :0(any)
9976 0.142 0.000 0.316 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:99(_commonType)
9976 0.133 0.000 0.133 0.000 :0(dgetrf)
18973 0.125 0.000 0.175 0.000 /usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:462(_fix_loc_scale)
39904 0.117 0.000 0.117 0.000 :0(append)
18973 0.105 0.000 0.292 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1461(alltrue)
19952 0.102 0.000 0.102 0.000 :0(zeros)
19952 0.093 0.000 0.154 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:71(isComplexType)
19952 0.090 0.000 0.090 0.000 :0(split)
9976 0.089 0.000 2.569 0.000 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:62(get_log_determinant_of_matrix)
19952 0.087 0.000 0.134 0.000 /bluehome/legoses/bce/bayes_GP_integrated_out/python/ce_funcs.py:35(logggamma)
9976 0.083 0.000 0.154 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:139(_fastCopyAndTranspose)
9976 0.076 0.000 0.125 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:157(_assertSquareness)
9976 0.074 0.000 0.097 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:151(_assertRank2)
9976 0.072 0.000 0.119 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:127(_to_native_byte_order)
18973 0.072 0.000 0.072 0.000 /usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:832(_argcheck)
9976 0.072 0.000 0.228 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:901(diagonal)
9976 0.070 0.000 0.070 0.000 :0(arange)
9976 0.061 0.000 0.061 0.000 :0(diagonal)
9976 0.055 0.000 0.055 0.000 :0(sum)
9976 0.053 0.000 0.075 0.000 /usr/lib64/python2.6/site-packages/numpy/linalg/linalg.py:84(_realType)
11996 0.050 0.000 0.091 0.000 /usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:1412(_rvs)
9384 0.047 0.000 0.162 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1898(prod)
9976 0.045 0.000 0.045 0.000 :0(sort)
11996 0.041 0.000 0.041 0.000 :0(standard_normal)
9976 0.037 0.000 0.037 0.000 :0(_fastCopyAndTranspose)
9976 0.037 0.000 0.037 0.000 :0(hasattr)
9976 0.037 0.000 0.037 0.000 :0(range)
6977 0.034 0.000 0.055 0.000 /usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:3731(_rvs)
9977 0.027 0.000 0.027 0.000 :0(max)
9976 0.023 0.000 0.023 0.000 /usr/lib64/python2.6/site-packages/numpy/core/numeric.py:498(isfortran)
9977 0.022 0.000 0.022 0.000 :0(min)
9976 0.022 0.000 0.022 0.000 :0(get)
6977 0.021 0.000 0.021 0.000 :0(uniform)
1 0.001 0.001 11.295 11.295 <string>:1(<module>)
1 0.001 0.001 11.296 11.296 profile:0(get_rho_lambda_draws(correlations,energies,rho_priors,lambda_e_prior,lambda_z_prior,candidate_sig2_rhos,candidate_sig2_lambda_e,candidate_sig2_lambda_z,3000))
2 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:445(__call__)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:385(__init__)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:175(_array2string)
2 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:475(_digits)
2 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:309(_extendLine)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:317(_formatArray)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1477(any)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:243(array2string)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/numeric.py:1390(array_str)
1 0.000 0.000 0.000 0.000 :0(compress)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/arrayprint.py:394(fillFormat)
6 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/numeric.py:2166(geterr)
12 0.000 0.000 0.000 0.000 :0(geterrobj)
0 0.000 0.000 profile:0(profiler)
1 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/fromnumeric.py:1043(ravel)
1 0.000 0.000 0.000 0.000 :0(ravel)
8 0.000 0.000 0.000 0.000 :0(rstrip)
6 0.000 0.000 0.000 0.000 /usr/lib64/python2.6/site-packages/numpy/core/numeric.py:2070(seterr)
6 0.000 0.000 0.000 0.000 :0(seterrobj)
1 0.000 0.000 0.000 0.000 :0(setprofile)
编辑:
以下是相关例程的副本
def get_rho_lambda_draws(correlations, energies, rho_priors, lam_e_prior, lam_z_prior,
candidate_sig2_rhos, candidate_sig2_lambda_e,
candidate_sig2_lambda_z, ndraws):
nBasis = len(correlations[0])
nStruct = len(correlations)
rho _draws = [ [0.5 for x in xrange(nBasis)] for y in xrange(ndraws)]
lambda_e_draws = [ 5 for x in xrange(ndraws)]
lambda_z_draws = [ 5 for x in xrange(ndraws)]
accept_rhos = array([0. for x in xrange(nBasis)])
accept_lambda_e = 0.
accept_lambda_z = 0.
for i in xrange(1,ndraws):
if i % 100 == 0:
print i, "REP<---------------------------------------------------------------------------------"
#do metropolis to get rho
rho_draws[i] = [x for x in rho_draws[i-1]]
lambda_e_draws[i] = lambda_e_draws[i-1]
lambda_z_draws[i] = lambda_z_draws[i-1]
rho_vec = [x for x in rho_draws[i-1]]
R_matrix_before =construct_R_matrix(correlations,correlations,rho_vec)
post_before = evaluate_posterior(R_matrix_before,rho_vec,energies,lambda_e_draws[i-1],lambda_z_draws[i-1],lam_e_prior,lam_z_prior,rho_priors)
index = 0
for j in xrange(nBasis):
cand = norm.rvs(rho_draws[i-1][j],scale=candidate_sig2_rhos[j])
if 0.0 < cand < 1.0:
rho_vec[j] = cand
R_matrix_after = construct_R_matrix(correlations,correlations,rho_vec)
post_after = evaluate_posterior(R_matrix_after,rho_vec,energies,lambda_e_draws[i-1],lambda_z_draws[i-1],lam_e_prior,lam_z_prior,rho_priors)
metrop_value = post_after - post_before
unif = log(uniform.rvs(0,1))
if metrop_value > unif:
rho_draws[i][j] = cand
post_before = post_after
accept_rhos[j] += 1
else:
rho_vec[j] = rho_draws[i-1][j]
R_matrix = construct_R_matrix(correlations,correlations,rho_vec)
cand = norm.rvs(lambda_e_draws[i-1],scale=candidate_sig2_lambda_e)
if cand > 0.0:
post_after = evaluate_posterior(R_matrix,rho_vec,energies,cand,lambda_z_draws[i-1],lam_e_prior,lam_z_prior,rho_priors)
metrop_value = post_after - post_before
unif = log(uniform.rvs(0,1))
if metrop_value > unif:
lambda_e_draws[i] = cand
post_before = post_after
accept_lambda_e = accept_lambda_e + 1
cand = norm.rvs(lambda_z_draws[i-1],scale=candidate_sig2_lambda_z)
if cand > 0.0:
post_after = evaluate_posterior(R_matrix,rho_vec,energies,lambda_e_draws[i],cand,lam_e_prior,lam_z_prior,rho_priors)
metrop_value = post_after - post_before
unif = log(uniform.rvs(0,1))
if metrop_value > unif:
lambda_z_draws[i] = cand
post_before = post_after
accept_lambda_z = accept_lambda_z + 1
print accept_rhos/ndraws
print accept_lambda_e/ndraws
print accept_lambda_z/ndraws
return [rho_draws,lambda_e_draws,lambda_z_draws]
def evaluate_posterior(R_matrix,rho_vec,energies,lambda_e,lambda_z,lam_e_prior,lam_z_prior,rho_prior_params):
# from scipy.linalg import solve
#from numpy import allclose
working_matrix = eye(len(R_matrix))/lambda_e + R_matrix/lambda_z
logdet = get_log_determinant_of_matrix(working_matrix)
x = solve(working_matrix,energies,sym_pos=True)
# if not allclose(dot(working_matrix,x),energies):
# exit('solve routine didnt work')
rho_priors = sum([loggbeta(rho_vec[j],rho_prior_params[j][0],rho_prior_params[j][1]) for j in xrange(len(rho_vec))])
loggposterior = -.5 * logdet - .5*dot(energies,x) + logggamma(lambda_e,lam_e_prior[0],lam_e_prior[1]) + logggamma(lambda_z,lam_z_prior[0],lam_z_prior[1]) + rho_priors #(a_e-1)*log(lambda_e) - b_e*lambda_e + (a_z-1)*log(lambda_z) - b_z*lambda_z + rho_priors
return loggposterior
def construct_R_matrix(listone,listtwo,rhos):
return prod(rhos[:]**(4*(listone[:,newaxis]-listtwo)**2),axis=2)
(再一次......我不知道为什么当我发帖时它会把我的输入分成几个块...我希望你可以把它去掉它)
答案 0 :(得分:6)
很难准确判断出你的代码究竟发生了什么,但我怀疑你只是有一些非(或不能)非常矢量化的数据。 因为.rvs()19000次的调用显然会慢于.rvs(size = 19000)。参见:
In [5]: %timeit x=[scipy.stats.norm().rvs() for i in range(19000)]
1 loops, best of 3: 1.23 s per loop
In [6]: %timeit x=scipy.stats.norm().rvs(size=19000)
1000 loops, best of 3: 1.67 ms per loop
因此,如果你确实有一个非常非常向量化的代码或算法,那么它应该比fortran慢。
答案 1 :(得分:5)
查看performance page created by the SciPy/NumPy folks。有许多非常简单的附加功能可以促进非常快速的代码。其中包括(a)使用weave
模块,尤其是inline
和blitz
选项。 (b)使用Cython在C中编写一些函数,但能够在Python中调用和使用它们。
我在Python中进行了大量的大规模科学计算工作,用于统计,金融和(在研究生院)计算机视觉。 Python之所以出现这类问题,并不是因为我的天真的第一个黑客代码会产生最快的解决方案,但因为在Python中我可以轻松地与大量其他任务进行交互。我可以轻松地为其他程序发布Linux命令,轻松读取和解析大多数数据文件,轻松与SQL和其他数据库软件接口;我有可用的所有R统计库,使用OpenCV命令(比C ++版本更好的语法)等等。
当我的任务的重要性是操纵一个新的数据集并弄脏我的手,感受到这些数据的细微差别时,Python的编程简易性以及matplotlib使它变得更好。后来,当我需要扩展时,我总是可以使用PyCUDA,Cython,或者如果需要高端性能,只需用C ++重写一些东西。由于现在大多数机器都有多处理器,因此多处理模块以及mpi4py使我能够快速而廉价地将恼人的for循环样式任务转换为更短的任务,而无需迁移到C ++。
简而言之,Python的真正实用性并非来自语言本身,而是来自于真正精通附加组件和附加功能,可以让您廉价地使您的一小部分常见问题在数据上快速执行在日常事务中确定这一点。
实时嵌入式通信软件将在很长一段时间内使用C ++ ......对于高频交易策略也是如此。但话说回来,这些类型的事物的专业解决方案并不是Python的意义所在。而且在some cases中,人们更喜欢不寻常的解决方案。
答案 2 :(得分:1)
通过用Numpy函数和使用numpy.ndarrays的结构替换它们来摆脱两个for循环和两个列表推导。也不要在计算之间打印 - 这也很慢。按照上述建议,您可以将速度提高10-50倍。
答案 3 :(得分:1)
您通常不应使用Numpy或Scipy来计算标量值。使用&#39;普通&#39;蟒蛇。扩展@sega_sai提供的示例:
In [11]: %timeit x = [normalvariate(0, 1) for i in range(190)]
1000 loops, best of 3: 274 µs per loop
In [12]: %timeit x = [scipy.stats.norm().rvs() for i in range(190)]
10 loops, best of 3: 180 ms per loop
In [13]: %timeit x = scipy.stats.norm().rvs(size=190)
1000 loops, best of 3: 987 µs per loop
如果您创建scipy.stats.norm().rvs
In [14]: rvs = scipy.stats.norm().rvs
In [15]: %timeit x = [rvs() for i in range(190)]
100 loops, best of 3: 3.8 ms per loop
In [16]: %timeit x = rvs(size=190)
10000 loops, best of 3: 44 µs per loop
另请注意,PyMC抱怨Scipy的概率分布:
&#34;基于使用2.0版的非正式比较,PyMC中的分布往往比SciPy中的分布(使用0.7版本)快约一个数量级,并且#34;
http://www.map.ox.ac.uk/media/PDF/Patil_et_al_2010.pdf
import pymc
s = pymc.Normal('s', 0, 1)
%timeit x = [s.rand() for i in range(190)]
100 loops, best of 3: 3.76 ms per loop
另请注意,Scipy在每次迭代时没有单独实例化更快:
generate = scipy.stats.norm().rvs
%timeit x = [generate() for i in range(190)]
100 loops, best of 3: 7.98 ms per loop
答案 4 :(得分:0)
答案 5 :(得分:0)
最近我发布了一些关于c / c ++ / fortran和python的性能的文章 计算器:
comparing python with c/fortran
我从那篇文章得出的结论是将python与低级别结合起来更好 编程语言比使用python本身进行数值计算。我其实在用 F2PY。