从Atm减少到A(我选择的),从A到Atm

时间:2012-02-28 15:46:37

标签: algorithm computation-theory turing-machines reduction

减少许多,不对称。我试图证明它,但它不起作用 很好。

给定两种语言A和B,其中A定义为

A={w| |w| is even} , i.e. `w` has an even length

B=A_TM,其中A_TM不可判定但图灵可识别!

鉴于以下减少:

f(w) = { (P(x):{accept;}),epsilon    , if |w| is even
f(w) = { (P(x):{reject;}),epsilon    , else

(请原谅我没有使用Latex,我没有经验)

正如我所看到的,从A <= B(从A到A_TM)的减少是可能的,并且效果很好。 但是,我不明白为什么B&lt; = A,是不可能的。

您能澄清一下并解释一下吗?

由于 罗恩

1 个答案:

答案 0 :(得分:3)

暂时假设B <= A。然后有一个函数f:Sigma*->Sigma*,以便:

f(w) = x in A           if w is in B
     = x not in A       if w is not in B

因此,我们可以在输入M上描述以下算法[图灵机] w

1. w' <- f(w)
2. if |w'| is even return true
3. return false

M很容易证明w接受w当且仅当BL(M) = B中[留给读者的练习],因此{{1} }}。
另外,对于任何输入M [来自其构造],w会停止。因此 - L(M)是可以决定的。

但是我们认为L(M) = B是可以决定的 - 这是一个矛盾,因为B = A_TM是不可判定的!