我正在研究分类问题
我有一个ndarray
形状(604329, 33)
,其中有32个要素和一个标签列:
>>> n_data.shape
(604329, 33)
此ndarray的第三列是带有0
和1
的标签
我需要将第三列作为最后一列移动,以便在需要切片时更容易使用。
问题:
有没有办法重建ndarray
我们可以将第三列作为最后一列移动?
答案 0 :(得分:2)
如果我理解正确,你想做:
my_array = numpy.roll(my_array,-3,axis=1)
答案 1 :(得分:2)
以下将会这样做:
x = np.hstack((x[:,:3],x[:,4:],x[:,3:4]))
其中x
是您的ndarray
。
答案 2 :(得分:2)
作为aix
解决方案的替代方案,您可以直接对数组进行切片,而不使用hstack
。
>>> a = numpy.array([range(33) for _ in range(4)])
>>> indices = range(33)
>>> indices.append(indices.pop(3))
>>> a[:,indices]
array([[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3],
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3],
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3],
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3]])
小阵列的速度要快一些:
>>> %timeit numpy.hstack((a[:,:3], a[:,4:], a[:, 3:4]))
100000 loops, best of 3: 19.1 us per loop
>>> %timeit indices = range(33); indices.append(indices.pop(3)); a[:,indices]
100000 loops, best of 3: 14 us per loop
但实际上,对于较大的数组,它的速度较慢。
>>> a = numpy.array([range(33) for _ in range(600000)])
>>> %timeit numpy.hstack((a[:,:3], a[:,4:], a[:, 3:4]))
1 loops, best of 3: 385 ms per loop
>>> %timeit indices = range(33); indices.append(indices.pop(3)); a[:,indices]
1 loops, best of 3: 670 ms per loop
如果您不需要保留列的顺序(例如,如果您可以使用roll
)那么Mr. E的解决方案对于大a
来说是最快的:
>>> %timeit numpy.roll(a, -3, axis=1)
10 loops, best of 3: 120 ms per loop