用于足迹的Lat / Lons的Python排序字​​典

时间:2012-01-03 13:22:12

标签: python sorting dictionary latitude-longitude haversine

我正在计算椭圆体表面上的卫星覆盖范围足迹,我的函数返回一个Lat / Lons列表,如下所示。这是一个字典的python列表。现在,如果我在Matlab或Matplotlib中分散绘图,我会得到一个很好的断开点的3D足迹。但是,我希望能够使用绘图(非散射)命令创建一个平滑的3D圆来表示足迹。为了做到这一点,我需要以某种方式对它们进行排序。我已经尝试了Haversine(最大圆距离)来找到每个点的最近邻居,但是当我有一组更大的值(GEO sats)时,这仍然偶然会让我偶然断开线。当足迹横跨赤道时,我还试图将值分成N和S纬度,然后按经度排序。我可能遗漏了一些东西 - 有没有人有更好/更快的想法来排序这样的列表,这样如果我连接列表中的所有连续点,我会得到一个完整的,有序的圆圈?

latLons = [{'lat': -33.783781327, 'lon': 137.47747747700001}, {'lat': -33.783781326899998, 'lon': 139.63963964000001}, {'lat': -33.603601166200001, 'lon': 136.03603603600001}, {'lat': -33.423421005500003, 'lon': 134.59459459499999}, {'lat': -32.882880523399997, 'lon': 132.43243243200001}, {'lat': -32.522520202199999, 'lon': 131.71171171200001}, {'lat': -32.342340041600004, 'lon': 145.40540540500001}, {'lat': -31.261259078399998, 'lon': 147.56756756799999}, {'lat': -31.081078917799999, 'lon': 128.828828829}, {'lat': -29.459457473099999, 'lon': 126.666666667}, {'lat': -28.558556670200002, 'lon': 125.94594594599999}, {'lat': -27.657655866700001, 'lon': 125.225225225}, {'lat': -26.936935223300001, 'lon': 151.89189189199999}, {'lat': -26.7567550624, 'lon': 124.504504504}, {'lat': -25.6756740961, 'lon': 152.61261261300001}, {'lat': -25.3153137736, 'lon': 123.78378378399999}, {'lat': -23.873872481599999, 'lon': 153.33333333300001}, {'lat': -23.333331995999998, 'lon': 123.063063063}, {'lat': -19.3693684138, 'lon': 154.05405405400001}, {'lat': -15.765765115600001, 'lon': 123.063063063}, {'lat': -15.2252246167, 'lon': 153.33333333300001}, {'lat': -13.243242777300001, 'lon': 152.61261261300001}, {'lat': -12.162161767000001, 'lon': 124.504504505}, {'lat': -11.801801428999999, 'lon': 151.89189189199999}, {'lat': -10.9009005815, 'lon': 125.225225225}, {'lat': -8.1981980155999992, 'lon': 149.00900900900001}, {'lat': -6.9369368056800003, 'lon': 147.56756756799999}, {'lat': -6.5765764584799999, 'lon': 129.54954954999999}, {'lat': -6.5765764584799999, 'lon': 146.84684684699999}, {'lat': -5.6756755875199998, 'lon': 130.99099099099999}, {'lat': -4.7747747122700002, 'lon': 143.24324324299999}, {'lat': -4.23423418502, 'lon': 141.08108108100001}, {'lat': -3.8738738326600002, 'lon': 138.198198198}]

2 个答案:

答案 0 :(得分:1)

一种方法是用极坐标表示相对于中心点的点,并使用角度作为排序键。

这是一个简单的实现:

import matplotlib.pyplot as plt
import math

def polar_sort(l):
    x, y = zip(*((c['lat'], c['lon']) for c in l))
    ave_x = float(sum(x))/len(x)
    ave_y = float(sum(y))/len(y)

    return sorted(l, key=lambda c: math.atan2(c['lat']-ave_x, c['lon']-ave_y))

latLons = [{'lat': -33.783781327, 'lon': 137.47747747700001}, {'lat': -33.783781326899998, 'lon': 139.63963964000001}, {'lat': -33.603601166200001, 'lon': 136.03603603600001}, {'lat': -33.423421005500003, 'lon': 134.59459459499999}, {'lat': -32.882880523399997, 'lon': 132.43243243200001}, {'lat': -32.522520202199999, 'lon': 131.71171171200001}, {'lat': -32.342340041600004, 'lon': 145.40540540500001}, {'lat': -31.261259078399998, 'lon': 147.56756756799999}, {'lat': -31.081078917799999, 'lon': 128.828828829}, {'lat': -29.459457473099999, 'lon': 126.666666667}, {'lat': -28.558556670200002, 'lon': 125.94594594599999}, {'lat': -27.657655866700001, 'lon': 125.225225225}, {'lat': -26.936935223300001, 'lon': 151.89189189199999}, {'lat': -26.7567550624, 'lon': 124.504504504}, {'lat': -25.6756740961, 'lon': 152.61261261300001}, {'lat': -25.3153137736, 'lon': 123.78378378399999}, {'lat': -23.873872481599999, 'lon': 153.33333333300001}, {'lat': -23.333331995999998, 'lon': 123.063063063}, {'lat': -19.3693684138, 'lon': 154.05405405400001}, {'lat': -15.765765115600001, 'lon': 123.063063063}, {'lat': -15.2252246167, 'lon': 153.33333333300001}, {'lat': -13.243242777300001, 'lon': 152.61261261300001}, {'lat': -12.162161767000001, 'lon': 124.504504505}, {'lat': -11.801801428999999, 'lon': 151.89189189199999}, {'lat': -10.9009005815, 'lon': 125.225225225}, {'lat': -8.1981980155999992, 'lon': 149.00900900900001}, {'lat': -6.9369368056800003, 'lon': 147.56756756799999}, {'lat': -6.5765764584799999, 'lon': 129.54954954999999}, {'lat': -6.5765764584799999, 'lon': 146.84684684699999}, {'lat': -5.6756755875199998, 'lon': 130.99099099099999}, {'lat': -4.7747747122700002, 'lon': 143.24324324299999}, {'lat': -4.23423418502, 'lon': 141.08108108100001}, {'lat': -3.8738738326600002, 'lon': 138.198198198}]

x,y = zip(*((c['lat'], c['lon']) for c in polar_sort(latLons)))

plt.plot(x,y)
plt.show()

enter image description here

答案 1 :(得分:0)

我认为不需要常规排序。在常规排序中,您使用项目之间的绝对顺序。在这里你没有绝对的顺序(什么是“第一”坐标?),只有一个相对的顺序。

首先,我会从字典中获取数据并将其转换为元组列表:

latlonslist = [ (x['lat'],x['lon']) for x in latLons ]

然后import scipy.spatial并使用您选择的distance来查找每个点的最近邻居。当然,你也可以使用欧几里德距离而不诉诸于scipy。

使用以下内容计算所有可能的距离(n^2 ops):

distances = {}  
for n1 in latlonslist:
  for n2 in latlonslist:
    if n1 == n2:
      continue
    thisdist = scipy.spatial.distance.euclidean(n1,n2)
    distances[n1,n2] = thisdist

然后从任意节点开始遍历节点列表,在每个步骤中查找最近的节点。