我有以下匹配问题:我有两个data.frames,一个每月观察一次(每个公司ID),另一个每季度观察一次(每个公司ID;注意该季度意味着财政季度;因此1Q = 1月,2月,3月不一定正确,而且财政季度不一定是3个月)。
对于每个月和公司,我希望得到该季度的正确价值。因此,几个月的四分之一具有相同的价值。作为示例,请参阅以下代码:
monthlyData <- data.frame(ID = rep(c("A", "B"), each = 5),
Month = rep(1:5, times = 2),
MonValue = 1:10)
monthlyData
ID Month MonValue
1 A 1 1
2 A 2 2
3 A 3 3
4 A 4 4
5 A 5 5
6 B 1 6
7 B 2 7
8 B 3 8
9 B 4 9
10 B 5 10
#Quarterly data, i.e. the value of every quarter has to be matched to several months in d1
#However, I want to match fiscal quarters, which means that one quarter is not necessarily 3 month long
qtrData <- data.frame(ID = rep(c("A", "B"), each = 2),
startMonth = c(1, 4, 1, 3),
endMonth = c(3, 5, 2, 5),
QTRValue = 1:4)
qtrData
ID startMonth endMonth QTRValue
1 A 1 3 1
2 A 4 5 2
3 B 1 2 3
4 B 3 5 4
#Desired output
ID Month MonValue QTRValue
1 A 1 1 1
2 A 2 2 1
3 A 3 3 1
4 A 4 4 2
5 A 5 5 2
6 B 1 6 3
7 B 2 7 3
8 B 3 8 4
9 B 4 9 4
10 B 5 10 4
注意:这个问题在几个月前发布在R-help上,但我没有得到任何答案,我自己找到了解决方案(参见R-help)。然而,现在,我在stackoverflow上发布了一个问题,我对data.table
提出了这个问题的问题,Andrie让我再次发布这个问题,因为他显然有一个很好的解决方案(见Question on SO)
更新:请参阅Matthew Dowle的评论:真实数据看起来如何?
这个数据更加真实。我添加了几行,但唯一更改的主要部分是endMonth
中的列qtrData
。更确切地说,startMonth
不一定是上一季度的endMonth
再加上一个月。因此,使用roll
选项,我认为你需要另一行代码(如果没有,你会得到20行,但是使用Andrie的解决方案,这是所需的一行,你得到17行)。如果我在这里不遗漏任何东西,那么就没有任何性能差异了。
monthlyData_new <- data.table(ID = rep(c("A", "B"), each = 10),
Month = rep(1:10, times = 2),
MonValue = 1:20)
qtrData_new <- data.table(ID = rep(c("A", "B"), each = 3),
startMonth = c(1, 4, 7, 1, 3, 8),
endMonth = c(3, 5, 10, 2, 5, 10),
QTRValue = 1:6)
setkey(qtrData_new, ID)
setkey(monthlyData_new, ID)
qtrData1 <- qtrData_new
setkey(qtrData1, ID, startMonth)
monthlyData1 <- monthlyData_new
setkey(monthlyData1, ID, Month)
withTable1 <- function(){
xx <- qtrData1[monthlyData1, roll=TRUE]
xx <- xx[startMonth <= endMonth]
}
withTable2 <- function(){
yy <- monthlyData_new[qtrData_new][Month >= startMonth & Month <= endMonth]
}
benchmark(withTable1, withTable2, replications=1e6)
test replications elapsed relative user.self sys.self user.child sys.child
1 withTable1 1000000 4.244 1.028599 4.232 0.008 0 0
2 withTable2 1000000 4.126 1.000000 4.096 0.028 0 0
答案 0 :(得分:4)
试试这个:
mD = data.table(monthlyData, key="ID,Month")
qD = data.table(qtrData,key="ID,startMonth")
qD[mD,roll=TRUE]
ID startMonth endMonth QTRValue MonValue
[1,] A 1 3 1 1
[2,] A 2 3 1 2
[3,] A 3 3 1 3
[4,] A 4 5 2 4
[5,] A 5 5 2 5
[6,] B 1 2 3 6
[7,] B 2 2 3 7
[8,] B 3 5 4 8
[9,] B 4 5 4 9
[10,] B 5 5 4 10
那应该快得多。
编辑:回答有问题的后续编辑。一种方法是使用NA存储缺失月份的位置。我发现更容易看到一个时间序列列(不规则的间隙和NA),而不是两个制作一系列范围。
> mD <- data.table(ID = rep(c("A", "B"), each = 10),
+ Month = rep(1:10, times = 2),
+ MonValue = 1:20, key="ID,Month")
>
> qD <- data.table(ID = rep(c("A", "B"), each = 4),
+ Month = c(1,4,6,7, 1,3,6,8),
+ QtrValue = c(1,2,NA,3, 4,5,NA,6),
+ key="ID,Month")
>
> mD
ID Month MonValue
[1,] A 1 1
[2,] A 2 2
[3,] A 3 3
[4,] A 4 4
[5,] A 5 5
[6,] A 6 6
[7,] A 7 7
[8,] A 8 8
[9,] A 9 9
[10,] A 10 10
[11,] B 1 11
[12,] B 2 12
[13,] B 3 13
[14,] B 4 14
[15,] B 5 15
[16,] B 6 16
[17,] B 7 17
[18,] B 8 18
[19,] B 9 19
[20,] B 10 20
> qD
ID Month QtrValue
[1,] A 1 1
[2,] A 4 2
[3,] A 6 NA # missing for 1 month (6)
[4,] A 7 3
[5,] B 1 4
[6,] B 3 5
[7,] B 6 NA # missing for 2 months (6 and 7)
[8,] B 8 6
> qD[mD,roll=TRUE]
ID Month QtrValue MonValue
[1,] A 1 1 1
[2,] A 2 1 2
[3,] A 3 1 3
[4,] A 4 2 4
[5,] A 5 2 5
[6,] A 6 NA 6
[7,] A 7 3 7
[8,] A 8 3 8
[9,] A 9 3 9
[10,] A 10 3 10
[11,] B 1 4 11
[12,] B 2 4 12
[13,] B 3 5 13
[14,] B 4 5 14
[15,] B 5 5 15
[16,] B 6 NA 16
[17,] B 7 NA 17
[18,] B 8 6 18
[19,] B 9 6 19
[20,] B 10 6 20
> qD[mD,roll=TRUE][!is.na(QtrValue)]
ID Month QtrValue MonValue
[1,] A 1 1 1
[2,] A 2 1 2
[3,] A 3 1 3
[4,] A 4 2 4
[5,] A 5 2 5
[6,] A 7 3 7
[7,] A 8 3 8
[8,] A 9 3 9
[9,] A 10 3 10
[10,] B 1 4 11
[11,] B 2 4 12
[12,] B 3 5 13
[13,] B 4 5 14
[14,] B 5 5 15
[15,] B 8 6 18
[16,] B 9 6 19
[17,] B 10 6 20
答案 1 :(得分:3)
以下是使用Base R和data.table
的两种解决方案。由于data.table
解决方案比基本R快约30%,并且更容易阅读,因此我建议使用data.table
。
由于您表示希望提高效率,我使用vapply
:
matchData <- function(id, month, data=d2){
vapply(seq_along(id),
function(i)which(
id[i]==data$ID &
month[i] >= data$startMonth &
month[i] <= data$endMonth),
FUN.VALUE=1,
USE.NAMES=FALSE
)
}
within(monthlyData,
Value <- qtrData$QTRValue[matchData(
monthlyData$ID, monthlyData$Month, qtrData)]
)
ID Month MonValue Value
1 A 1 1 1
2 A 2 2 1
3 A 3 3 1
4 A 4 4 2
5 A 5 5 2
6 B 1 6 3
7 B 2 7 3
8 B 3 8 4
9 B 4 9 4
10 B 5 10 4
并使用data.table
演示如何执行此操作:
mD <- data.table(monthlyData, key="ID")
qD <- data.table(qtrData, key="ID")
mD[qD][Month>=startMonth & Month<=endMonth]
ID Month MonValue startMonth endMonth QTRValue
[1,] A 1 1 1 3 1
[2,] A 2 2 1 3 1
[3,] A 3 3 1 3 1
[4,] A 4 4 4 5 2
[5,] A 5 5 4 5 2
[6,] B 1 6 1 2 3
[7,] B 2 7 1 2 3
[8,] B 3 8 3 5 4
[9,] B 4 9 3 5 4
[10,] B 5 10 3 5 4
我很好奇这两种方法的比较:
library(rbenchmark)
withBase <- function(){
xx <- within(monthlyData,
Value <- qtrData$QTRValue[matchData(monthlyData$ID, monthlyData$Month, qtrData)])
}
withTable <- function(){
yy <- mD[qD][Month>=startMonth & Month<=endMonth]
}
benchmark(withBase, withTable, replications=1e6)
test replications elapsed relative user.self sys.self user.child
1 withBase 1000000 10.09 1.296915 7.65 0.21 NA
2 withTable 1000000 7.78 1.000000 6.38 0.16 NA