我有一个关于有限排列集的代数群的用例。因为我想将该组用于各种不相关的排列类,我想将其作为混合特性。这是我尝试的摘录
trait Permutation[P <: Permutation[P]] { this: P =>
def +(that: P): P
//final override def equals(that: Any) = ...
//final override lazy val hashCode = ...
// Lots of other stuff
}
object Permutation {
trait Sum[P <: Permutation[P]] extends Permutation[P] { this: P =>
val perm1, perm2: P
// Lots of other stuff
}
private object Sum {
def unapply[P <: Permutation[P]](s: Sum[P]): Some[(P, P)] = Some(s.perm1, s.perm2)
//def unapply(s: Sum[_ <: Permutation[_]]): Some[(Permutation[_], Permutation[_])] = Some(s.perm1, s.perm2)
}
private def simplify[P <: Permutation[P]](p: P): P = {
p match {
case Sum(a, Sum(b, c)) => simplify(simplify(a + b) + c)
// Lots of other rules
case _ => p
}
}
}
在某个时间点,我想调用简化方法,以便使用代数公理简化组操作的表达式。使用模式匹配似乎是有意义的,因为有很多公理需要评估,语法简洁。但是,如果我编译代码,我得到:
error: inferred type arguments [P] do not conform to method unapply's type parameter bounds [P <: Permutation[P]]
我不明白为什么编译器无法正确推断出类型,我不知道如何帮助它。实际上,在这种情况下,当模式匹配时,P的参数类型是无关紧要的。如果p是任何排列和,则模式应该匹配。返回类型仍然是P,因为转换只是通过调用P上的+运算符来完成。
因此,在第二次尝试中,我交换了注释掉的unapply版本。但是,我从编译器(2.8.2)得到一个断言错误:
assertion failed: Sum((a @ _), (b @ _)) ==> Permutation.Sum.unapply(<unapply-selector>) <unapply> ((a @ _), (b @ _)), pt = Permutation[?>: Nothing <: Any]
我是如何让编译器接受这个的?
提前致谢!
答案 0 :(得分:0)
经过两天的繁殖后,我终于找到了一个没有警告的编译解决方案并通过了我的规范测试。以下是我的代码的可编辑摘录,以显示所需内容。但是请注意,代码是无操作的,因为我遗漏了实际执行排列的部分:
/**
* A generic mix-in for permutations.
* <p>
* The <code>+</code> operator (and the apply function) is defined as the
* concatenation of this permutation and another permutation.
* This operator is called the group operator because it forms an algebraic
* group on the set of all moves.
* Note that this group is not abelian, that is the group operator is not
* commutative.
* <p>
* The <code>*</code> operator is the concatenation of a move with itself for
* <code>n</code> times, where <code>n</code> is an integer.
* This operator is called the scalar operator because the following subset(!)
* of the axioms for an algebraic module apply to it:
* <ul>
* <li>the operation is associative,
* that is (a*x)*y = a*(x*y)
* for any move a and any integers x and y.
* <li>the operation is a group homomorphism from integers to moves,
* that is a*(x+y) = a*x + a*y
* for any move a and any integers x and y.
* <li>the operation has one as its neutral element,
* that is a*1 = m for any move a.
* </ul>
*
* @param <P> The target type which represents the permutation resulting from
* mixing in this trait.
* @see Move3Spec for details of the specification.
*/
trait Permutation[P <: Permutation[P]] { this: P =>
def identity: P
def *(that: Int): P
def +(that: P): P
def unary_- : P
final def -(that: P) = this + -that
final def unary_+ = this
def simplify = this
/** Succeeds iff `that` is another permutation with an equivalent sequence. */
/*final*/ override def equals(that: Any): Boolean // = code omitted
/** Is consistent with equals. */
/*final*/ override def hashCode: Int // = code omitted
// Lots of other stuff: The term string, the permutation sequence, the order etc.
}
object Permutation {
trait Identity[P <: Permutation[P]] extends Permutation[P] { this: P =>
final override def identity = this
// Lots of other stuff.
}
trait Product[P <: Permutation[P]] extends Permutation[P] { this: P =>
val perm: P
val scalar: Int
final override lazy val simplify = simplifyTop(perm.simplify * scalar)
// Lots of other stuff.
}
trait Sum[P <: Permutation[P]] extends Permutation[P] { this: P =>
val perm1, perm2: P
final override lazy val simplify = simplifyTop(perm1.simplify + perm2.simplify)
// Lots of other stuff.
}
trait Inverse[P <: Permutation[P]] extends Permutation[P] { this: P =>
val perm: P
final override lazy val simplify = simplifyTop(-perm.simplify)
// Lots of other stuff.
}
private def simplifyTop[P <: Permutation[P]](p: P): P = {
// This is the prelude required to make the extraction work.
type Pr = Product[_ <: P]
type Su = Sum[_ <: P]
type In = Inverse[_ <: P]
object Pr { def unapply(p: Pr) = Some(p.perm, p.scalar) }
object Su { def unapply(s: Su) = Some(s.perm1, s.perm2) }
object In { def unapply(i: In) = Some(i.perm) }
import Permutation.{simplifyTop => s}
// Finally, here comes the pattern matching and the transformation of the
// composed permutation term.
// See how expressive and concise the code is - this is where Scala really
// shines!
p match {
case Pr(Pr(a, x), y) => s(a*(x*y))
case Su(Pr(a, x), Pr(b, y)) if a == b => s(a*(x + y))
case Su(a, Su(b, c)) => s(s(a + b) + c)
case In(Pr(a, x)) => s(s(-a)*x)
case In(a) if a == a.identity => a.identity
// Lots of other rules
case _ => p
}
} ensuring (_ == p)
// Lots of other stuff
}
/** Here's a simple application of the mix-in. */
class Foo extends Permutation[Foo] {
import Foo._
def identity: Foo = Identity
def *(that: Int): Foo = new Product(this, that)
def +(that: Foo): Foo = new Sum(this, that)
lazy val unary_- : Foo = new Inverse(this)
// Lots of other stuff
}
object Foo {
private object Identity
extends Foo with Permutation.Identity[Foo]
private class Product(val perm: Foo, val scalar: Int)
extends Foo with Permutation.Product[Foo]
private class Sum(val perm1: Foo, val perm2: Foo)
extends Foo with Permutation.Sum[Foo]
private class Inverse(val perm: Foo)
extends Foo with Permutation.Inverse[Foo]
// Lots of other stuff
}
如您所见,解决方案是定义simplifyTop方法本地的类型和提取器对象。
我还提供了一个如何将这种混合应用于Foo类的小例子。正如您所看到的,Foo只不过是一个工厂,可以根据自己的类型进行组合排列。如果您有许多这样的课程,那将是一个很大的好处。
&LT;咆哮&GT;
然而,我无法抗拒说Scala的类型系统非常复杂!我是一名经验丰富的Java库开发人员,对Java Generics非常熟练。然而,花了两天的时间才弄清楚六行代码和三种类型和对象定义!如果这不是出于教育目的,我会抛弃这种方法。
现在,我很想知道,由于这种复杂性,Scala不会成为编程语言方面的下一个重大事件。如果你是一个Java开发人员,现在对Java泛型感到有些不舒服(不是我),那么你会讨厌Scala的类型系统,因为它至少可以为Java泛型的概念添加不变量,协变量和反变量。
总而言之,Scala的类型系统似乎比开发人员更能吸引科学家。从科学的角度来看,很好地推断一个程序的类型安全性。从开发人员的角度来看,弄清楚这些细节的时间是浪费,因为它使他们远离程序的功能方面。没关系,我肯定会继续使用Scala。模式匹配,混合和高阶函数的组合太强大,不容错过。但是,如果没有过于复杂的类型系统,我觉得Scala会更高效。
&LT; /咆哮&GT;