我刚刚重新发明了一些monad,但我不确定是哪一个。它允许您对计算的步骤进行建模,因此您可以交错执行多个计算的步骤,以找到最先完成的计算。
{-# LANGUAGE ExistentialQuantification #-}
module Computation where
-- model the steps of a computation
data Computation a = forall b. Step b (b -> Computation a) | Done a
instance Monad Computation where
(Step b g) >>= f = Step b $ (>>=f) . g
(Done b) >>= f = Step b f
return = Done
runComputation :: Computation a -> a
runComputation (Step b g) = runComputation (g b)
runComputation (Done a) = a
isDone :: Computation a -> Bool
isDone (Done _) = True
isDone _ = False
-- an order for a set of computations
data Schedule a = a :> Computation (Schedule a) | Last
toList :: Schedule a -> [a]
toList Last = []
toList (a :> c) = a : (toList . runComputation) c
-- given a set of computations, find a schedule to generate all their results
type Strategy a = [Computation a] -> Computation (Schedule a)
-- schedule all the completed computations, and step the rest,
-- passing the remaining to the given function
scheduleOrStep :: (Queue (Computation a) -> Computation (Schedule a)) -> Strategy a
scheduleOrStep s cs = scheduleOrStep' id cs
where scheduleOrStep' q ((Done a):cs) = Done $ a :> scheduleOrStep' q cs
scheduleOrStep' q ((Step b g):cs) = scheduleOrStep' (q . (g b:)) cs
scheduleOrStep' q [] = s q
-- schedule all completed compuations, step all the rest once, and repeat
-- (may never complete for infinite lists)
-- checking each row of
-- [ [ c0s0, c1s0, c2s0, ... ]
-- , [ c0s1, c1s1, c2s1, ... ]
-- , [ c0s2, c1s2, c2s2, ... ]
-- ...
-- ]
-- (where cNsM is computation N stepped M times)
fair :: Strategy a
fair [] = Done Last
fair cs = scheduleOrStep (fair . ($[])) cs
-- schedule more steps for earlier computations rather than later computations
-- (works on infinite lists)
-- checking the sw-ne diagonals of
-- [ [ c0s0, c1s0, c2s0, ... ]
-- , [ c0s1, c1s1, c2s1, ... ]
-- , [ c0s2, c1s2, c2s2, ... ]
-- ...
-- ]
-- (where cNsM is computation N stepped M times)
diag :: Enqueue (Computation a)-> Strategy a
diag _ [] = Done Last
diag enq cs = diag' cs id
where diag' (c:cs) q = scheduleOrStep (diag' cs) (enq c q $ [])
diag' [] q = fair (q [])
-- diagonal downwards :
-- [ c0s0,
-- c1s0, c0s1,
-- c2s0, c1s1, c0s2,
-- ...
-- cNs0, c{N-1}s1, ..., c1s{N-1}, c0sN,
-- ...
-- ]
diagd :: Strategy a
diagd = diag prepend
-- diagonal upwards :
-- [ c0s0,
-- c0s1, c1s0,
-- c0s2, c1s1, c2s0,
-- ...
-- c0sN, c1s{N-1}, ..., c{s1N-1}, cNs0,
-- ...
-- ]
diagu :: Strategy a
diagu = diag append
-- a queue type
type Queue a = [a] -> [a]
type Enqueue a = a -> Queue a -> Queue a
append :: Enqueue a
append x q = q . (x:)
prepend :: Enqueue a
prepend x q = (x:) . q
我觉得这可能是某种线程monad?
答案 0 :(得分:5)
它看起来像是一个恢复状态的monad。我认为MTL在GHC 6.6周围曾经是一个恢复单子,但是如果它消失的话。密苏里大学的威廉哈里森有很多关于恢复单子的论文 - http://people.cs.missouri.edu/~harrisonwl/publications.html
答案 1 :(得分:5)
我不明白为什么不
data Computation a = Step (Computation a) | Done a
instance Monad Computation where
(Step g) >>= f = Step $ g >>= f
(Done b) >>= f = Step (f b)
return = Done
我不确定这个monad是什么,但它绝对更简单,并且在大多数方面似乎都相同。
答案 2 :(得分:2)
我没有花太多时间来理解你的代码,但它听起来真的像monad-coroutine包中的coroutine monad,这可能更为通用。
答案 3 :(得分:2)
这看起来类似于Don Stewart前一段时间使用的流融合的定义,并且也与iteratees有些相关(虽然没有使用枚举器将数据推入iteratee的概念),但不如流融合I猜测。