我在 Mathematica 7.0.1中Mesh
生成的3D表面上渲染ContourPlot3D
行时遇到问题:
p=ContourPlot3D[x^4+y^4+z^4-(x^2+y^2+z^2)^2+3(x^2+y^2+z^2)==3,
{x, -2,2}, {y, -2, 2}, {z,-2,2},
BoundaryStyle->Directive[Black,Thickness[.003]],
ContourStyle->Directive[Orange,Opacity[0.5],Specularity[White,300]],
PlotPoints->90,Ticks->None,
MeshStyle->Directive[GrayLevel[.7],Thickness[.001]],
Lighting->{{"Directional",RGBColor[1,1,1],
{ImageScaled@{1,0,1},ImageScaled@{0,0,0}}}}];
p=Graphics[Inset[p,{0,0},Center,{1,1}],
PlotRange->{{-.5,.5},{-.5,.5}},Frame->True]
仔细观察它们:
Show[p, PlotRange -> {{-.16, -.05}, {0, .1}}]
你会看到灰色的Mesh
线在许多地方被表面形成三角形重叠,甚至看起来是虚线。有办法避免这种情况吗?
答案 0 :(得分:5)
John Fultz has answered我的问题在官方新闻组中。 Mathematica 7用户(可能对于拥有不支持DepthPeeling
呈现方法的图形卡的版本8用户)的解决方案是使用未记录的MeshStyle
选项形式:
MeshStyle -> {{GrayLevel[.7], Tube[0.01]}}
如果Mesh
行显示为平面对象,可以使用Glow
:
MeshStyle -> {{Glow[GrayLevel[.7]], Black, Tube[0.005]}}
现在网格很好地呈现:
p1 = ContourPlot3D[
x^4 + y^4 + z^4 - (x^2 + y^2 + z^2)^2 + 3 (x^2 + y^2 + z^2) ==
3, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
BoundaryStyle -> Directive[Black, Thickness[.003]],
ContourStyle ->
Directive[Orange, Opacity[0.5], Specularity[White, 300]],
Ticks -> None, PlotPoints -> 40,
MeshStyle -> {{Glow[GrayLevel[.7]], Black, Tube[0.005]}},
Lighting -> {{"Directional",
RGBColor[1, 1, 1], {ImageScaled@{1, 0, 1},
ImageScaled@{0, 0, 0}}}}];
p = Graphics[Inset[p1, {0, 0}, Center, {1, 1}],
PlotRange -> {{-.5, .5}, {-.5, .5}}, Frame -> True,
GridLines -> Automatic]
Show[p, PlotRange -> {{-.16, -.05}, {0, .1}}]
答案 1 :(得分:4)
对于它的价值,我在Mac OS 10.7.1上的M8.0.1中没有看到这个问题: