我有一个高度图。我想有效地计算在任何给定位置和高度从眼睛可见的哪些瓷砖。
This paper表示高度图表现优于将地形转换为某种网格,但他们使用Bresenhams对网格进行采样。
如果我采用它,我必须为地图上的每一块瓷砖做一条视线Bresenham线。在我看来,如果你从眼睛向外填充,它应该可以重复使用大部分计算并在一次通过中计算高度图 - 扫描线填充方法可能是什么?
但逻辑让我感到震惊。逻辑是什么?
这是一个高度图,其中有一个特定的观景点(绿色立方体)的可见性(在“分水岭”中的“视域”?)画在它上面:
这是我提出的O(n)扫描;我在下面的答案How to compute the visible area based on a heightmap?富兰克林和雷的方法中看起来与我在论文中给出的相同,只是在这种情况下,我从眼睛向外走,而不是走向外围,朝着中心做一个bresenhams;在我看来,我的方法会有更好的缓存行为 - 即更快 - 并使用更少的内存,因为它不必跟踪每个磁贴的向量,只记住扫描线的价值:
typedef std::vector<float> visbuf_t;
inline void map::_visibility_scan(const visbuf_t& in,visbuf_t& out,const vec_t& eye,int start_x,int stop_x,int y,int prev_y) {
const int xdir = (start_x < stop_x)? 1: -1;
for(int x=start_x; x!=stop_x; x+=xdir) {
const int x_diff = abs(eye.x-x), y_diff = abs(eye.z-y);
const bool horiz = (x_diff >= y_diff);
const int x_step = horiz? 1: x_diff/y_diff;
const int in_x = x-x_step*xdir; // where in the in buffer would we get the inner value?
const float outer_d = vec2_t(x,y).distance(vec2_t(eye.x,eye.z));
const float inner_d = vec2_t(in_x,horiz? y: prev_y).distance(vec2_t(eye.x,eye.z));
const float inner = (horiz? out: in).at(in_x)*(outer_d/inner_d); // get the inner value, scaling by distance
const float outer = height_at(x,y)-eye.y; // height we are at right now in the map, eye-relative
if(inner <= outer) {
out.at(x) = outer;
vis.at(y*width+x) = VISIBLE;
} else {
out.at(x) = inner;
vis.at(y*width+x) = NOT_VISIBLE;
}
}
}
void map::visibility_add(const vec_t& eye) {
const float BASE = -10000; // represents a downward vector that would always be visible
visbuf_t scan_0, scan_out, scan_in;
scan_0.resize(width);
vis[eye.z*width+eye.x-1] = vis[eye.z*width+eye.x] = vis[eye.z*width+eye.x+1] = VISIBLE;
scan_0.at(eye.x) = BASE;
scan_0.at(eye.x-1) = BASE;
scan_0.at(eye.x+1) = BASE;
_visibility_scan(scan_0,scan_0,eye,eye.x+2,width,eye.z,eye.z);
_visibility_scan(scan_0,scan_0,eye,eye.x-2,-1,eye.z,eye.z);
scan_out = scan_0;
for(int y=eye.z+1; y<height; y++) {
scan_in = scan_out;
_visibility_scan(scan_in,scan_out,eye,eye.x,-1,y,y-1);
_visibility_scan(scan_in,scan_out,eye,eye.x,width,y,y-1);
}
scan_out = scan_0;
for(int y=eye.z-1; y>=0; y--) {
scan_in = scan_out;
_visibility_scan(scan_in,scan_out,eye,eye.x,-1,y,y+1);
_visibility_scan(scan_in,scan_out,eye,eye.x,width,y,y+1);
}
}
这是一种有效的方法吗?
那么如何最有效地计算这个视域?
答案 0 :(得分:3)
您想要的是扫描算法。基本上你将光线(Bresenham's)投射到每个周边细胞,但是在你去的时候跟踪地平线并将你在路上传递的任何细胞标记为可见或不可见(如果可见则更新光线的地平线)。这会让你从原始方法的O(n ^ 3)(单独测试nxn DEM的每个单元格)到O(n ^ 2)。
本paper第5.1节中对算法的更详细描述(如果您希望使用真正巨大的高度图,您可能会因其他原因而感到有趣)。