例如,
rank permutation
0 abc
1 acb
2 bac
3 bca
4 cab
5 cba
所以,如果有人要求我给排名4排列,答案是出租车。请提供此程序的java代码
答案 0 :(得分:6)
我是第一次尝试!! :-) 真的很好的功课,很好的问题,你让我的一天!这是javascript中的解决方案:
function permutation (rank, n, chars)
{
var fact, char_idx, this_char;
if (n == 0)
return "";
char_idx = Math.floor(rank / factorial(n - 1));
this_char = chars.splice(char_idx, 1);
// returns the char with index char_idx and removes it from array
return this_char +
permutation(rank % factorial(n - 1), n - 1, chars);
}
只需将其称为permutation(5, 3, ['a', 'b', 'c'])
,就是这样。
你必须编写自己的factorial()函数 - 作为作业: - )
答案 1 :(得分:0)
这是一个c#版本:基本思路是使用factorial来确定排列,而不是试图获得所有排列(你可以参考我的博客@ http://codingworkout.blogspot.com/2014/08/kth-permutation.html)
public string GetKthPermutation(string s, int k, int[] factorial)
{
if (k == 1)
{
return s;
}
Assert.IsTrue(k > 1);
int numbeOfPermutationsWithRemainingElements = factorial[s.Length-1];
string permutation = null;
if (k <= numbeOfPermutationsWithRemainingElements)
{
//just find the kthPermutation using remaining elements
permutation = s[0] + this.GetKthPermutation(s.Substring(1), k,
factorial);
return permutation;
}
int quotient = k / numbeOfPermutationsWithRemainingElements;
int remainder = k % numbeOfPermutationsWithRemainingElements;
Assert.IsTrue(quotient > 0);
int indexOfCurrentCharacter = quotient;
if(remainder == 0)
{
indexOfCurrentCharacter -= 1;
}
permutation = s[indexOfCurrentCharacter].ToString();
Assert.IsTrue(indexOfCurrentCharacter > 0);
Assert.IsTrue(indexOfCurrentCharacter < s.Length);
string remainingCharactersString = s.Substring(0, indexOfCurrentCharacter);
if(indexOfCurrentCharacter < (s.Length-1))
{
remainingCharactersString += s.Substring(indexOfCurrentCharacter + 1);
}
if(remainder == 0)
{
k = numbeOfPermutationsWithRemainingElements;
}
else
{
k = remainder;
}
permutation += this.GetKthPermutation(remainingCharactersString, k, factorial);
return permutation;
}
其中
public string GetKthPermutation(string s, int k)
{
s.ThrowIfNullOrWhiteSpace("a");
k.Throw("k", ik => ik <= 0);
int[] factorial = new int[s.Length+1];
factorial[0] = 0;
factorial[1] = 1;
for(int i =2;i<=s.Length; i++)
{
factorial[i] = factorial[i - 1] * i;
}
if(k > factorial[s.Length])
{
throw new Exception(string.Format("There will be no '{0}' permuation as the total number of permutations that can be abieved are '{1}'", k, s.Length));
}
string kthPermutation = this.GetKthPermutation(s, k, factorial);
return kthPermutation;
}
单元测试
[TestMethod]
public void KthPermutationTests()
{
string s1 = "abc";
string[] perms1 = { "abc", "acb", "bac", "bca", "cab", "cba"};
for(int i =1;i<=6;i++)
{
string s = this.GetKthPermutation(s1, i);
Assert.AreEqual(s, perms1[i - 1]);
string ss = this.GetKthPermutation_BruteForce(s1, i);
Assert.AreEqual(ss, s);
}
s1 = "123";
perms1 = new string[] {"123", "132", "213", "231", "312", "321"};
for (int i = 1; i <= 6; i++)
{
string s = this.GetKthPermutation(s1, i);
Assert.AreEqual(s, perms1[i - 1]);
string ss = this.GetKthPermutation_BruteForce(s1, i);
Assert.AreEqual(ss, s);
}
s1 = "1234";
perms1 = new string[] { "1234", "1243", "1324", "1342", "1423", "1432",
"2134", "2143", "2314", "2341", "2413", "2431",
"3124", "3142", "3214", "3241", "3412", "3421",
"4123", "4132", "4213", "4231", "4312", "4321"};
for (int i = 1; i <= 24; i++)
{
string s = this.GetKthPermutation(s1, i);
Assert.AreEqual(s, perms1[i - 1]);
string ss = this.GetKthPermutation_BruteForce(s1, i);
Assert.AreEqual(ss, s);
}
}