我正在此 AWS 文档的第 4 步中了解如何使用 lambda 拆分 csv 数据 https://docs.aws.amazon.com/pinpoint/latest/developerguide/tutorials-importing-data-lambda-function-input-split.html
我已经按照建议创建了 lambda_function.py 文件并存储在根目录中
import os
import boto3
import s3fs
from botocore.exceptions import ClientError
input_archive_folder = "input_archive"
to_process_folder = "to_process"
file_row_limit = 50
file_delimiter = ','
# S3 bucket info
s3 = s3fs.S3FileSystem(anon=False)
def lambda_handler(event, context):
print("Received event: \n" + str(event))
for record in event['Records']:
# Assign some variables that make it easier to work with the data in the
# event record.
bucket = record['s3']['bucket']['name']
key = record['s3']['object']['key']
input_file = os.path.join(bucket,key)
archive_path = os.path.join(bucket,input_archive_folder,os.path.basename(key))
folder = os.path.split(key)[0]
s3_url = os.path.join(bucket,folder)
output_file_template = os.path.splitext(os.path.basename(key))[0] + "__part"
output_path = os.path.join(bucket,to_process_folder)
# Set a variable that contains the number of files that this Lambda
# function creates after it runs.
num_files = file_count(s3.open(input_file, 'r'), file_delimiter, file_row_limit)
# Split the input file into several files, each with 50 rows.
split(s3.open(input_file, 'r'), file_delimiter, file_row_limit, output_file_template, output_path, True, num_files)
# Send the unchanged input file to an archive folder.
archive(input_file,archive_path)
# Determine the number of files that this Lambda function will create.
def file_count(file_handler, delimiter, row_limit):
import csv
reader = csv.reader(file_handler, delimiter=delimiter)
# Figure out the number of files this function will generate.
row_count = sum(1 for row in reader) - 1
# If there's a remainder, always round up.
file_count = int(row_count // row_limit) + (row_count % row_limit > 0)
return file_count
# Split the input into several smaller files.
def split(filehandler, delimiter, row_limit, output_name_template, output_path, keep_headers, num_files):
import csv
reader = csv.reader(filehandler, delimiter=delimiter)
current_piece = 1
current_out_path = os.path.join(
output_path,
output_name_template + str(current_piece) + "__of" + str(num_files) + ".csv"
)
current_out_writer = csv.writer(s3.open(current_out_path, 'w'), delimiter=delimiter)
current_limit = row_limit
if keep_headers:
headers = next(reader)
current_out_writer.writerow(headers)
for i, row in enumerate(reader):
if i + 1 > current_limit:
current_piece += 1
current_limit = row_limit * current_piece
current_out_path = os.path.join(
output_path,
output_name_template + str(current_piece) + "__of" + str(num_files) + ".csv"
)
current_out_writer = csv.writer(s3.open(current_out_path, 'w'), delimiter=delimiter)
if keep_headers:
current_out_writer.writerow(headers)
current_out_writer.writerow(row)
# Move the original input file into an archive folder.
def archive(input_file, archive_path):
s3.copy_basic(input_file,archive_path)
print("Moved " + input_file + " to " + archive_path)
s3.rm(input_file)
我现在正在尝试使用 testfile.csv 在步骤 4.2 中运行测试事件 但是,当我运行测试时,它返回以下错误:
Response
{
"errorMessage": "Unable to import module 'lambda_function': No module named 'lambda_function'",
"errorType": "Runtime.ImportModuleError",
"stackTrace": []
}
我从一开始就遵循文档中的每一步,确保将 lambda_function.py 文件保存到函数的根目录,甚至从头开始再试一次,但没有成功。谁能帮我指明正确的方向?