每当我尝试将列转换为 DateTime 格式时,我都会收到此错误。我的列是字符串格式,我试过在网上查找,但找不到任何可以帮助我解决此问题的内容。
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-87-9a285deef407> in <module>
----> 1 pd.to_datetime(bookings_ship_time['purchase_order_requested_cargo_ready_date'], infer_datetime_format=True)
2
3
c:\users\marcus\appdata\local\programs\python\python38-32\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
799 result = result.tz_localize(tz)
800 elif isinstance(arg, ABCSeries):
--> 801 cache_array = _maybe_cache(arg, format, cache, convert_listlike)
802 if not cache_array.empty:
803 result = arg.map(cache_array)
c:\users\marcus\appdata\local\programs\python\python38-32\lib\site-packages\pandas\core\tools\datetimes.py in _maybe_cache(arg, format, cache, convert_listlike)
171 if cache:
172 # Perform a quicker unique check
--> 173 if not should_cache(arg):
174 return cache_array
175
c:\users\marcus\appdata\local\programs\python\python38-32\lib\site-packages\pandas\core\tools\datetimes.py in should_cache(arg, unique_share, check_count)
135 assert 0 < unique_share < 1, "unique_share must be in next bounds: (0; 1)"
136
--> 137 unique_elements = set(islice(arg, check_count))
138 if len(unique_elements) > check_count * unique_share:
139 do_caching = False
TypeError: unhashable type: 'numpy.ndarray'
采购订单栏信息如下:
purchase_order_id
1140 [2017-04-10]
1148 [2017-07-01]
1151 [2017-05-30]
3156 [2017-10-13]
3363 [2017-09-08]
...
56584 [2019-09-30]
56585 [2019-09-30]
56586 [2019-09-23]
56587 [2019-09-23]
56588 [2019-09-23]
编辑: 数据类型是 ('O') 我曾尝试使用 pd.to_datetime 方法和:
bookings_ship_time['purchase_order_requested_cargo_ready_date'] = datetime.strptime(bookings_ship_time['purchase_order_requested_cargo_ready_date'], '%Y/%m/%d')