我使用这个脚本是为了从 tiingo 检索 etfs 价格数据并计算滚动回报和夏普。
library(quantmod)
library(httr)
library(jsonlite)
library(tidyverse)
library(hrbrthemes)
library(tidyquant)
library(timetk)
library(dplyr)
library(roll)
###
tickers = c('spy', 'qqq', 'dia', 'splv'); forex = c('EURUSD')
tiingo_api_key("XXXX")
price_data <- tq_get(tickers, from = '2019-08-19', to = '2021-01-29',
get = "tiingo")
forex_data <- tq_get(forex, from = '2019-08-19', to = '2021-01-29',
get = "tiingo")
forex_data <- forex_data[ ,c(2, 8)]
price_data <- price_data %>%
# join datasets using date column.
# non key columns from rhs that have the same names as columns in
# the lhs get assigned the suffix "_forex_data"
left_join(forex_data, by = c("date"), suffix = c("", "_forex_data")) %>%
# calculate new value of adjusted by dividing by forex value
mutate(adjusted = adjusted / adjusted_forex_data) %>%
# exclude adjusted_forex_data column from result
select(-adjusted_forex_data)
price_data <- na.omit(price_data)
price_data <- price_data[ ,c(1, 2,8)]
colnames(price_data)[3] <- "adjClose"
by_etf <- price_data %>% group_by(symbol)
price_data_roll <- by_etf %>%
mutate(lagx = lag(adjClose)) %>%
mutate(pct_change = (adjClose - lagx)/adjClose)%>%
mutate(rollmeanx = roll_mean(pct_change, width = 22),rollsdx = roll_sd(pct_change, width=22)) %>%
mutate(roll_sharpe = rollmeanx / rollsdx^5)
price_data_change <- price_data_roll[ ,c(1, 2, 5)]
library(lubridate)
#price_data_eom <- na.omit(price_data_eom)
price_data_eom <- price_data_change %>% mutate(Month = month(date), Year = year(date)) %>%
mutate(Ini_date = ymd(paste(Year, Month, "01", sep = "-"))) %>%
group_by(Ini_date) %>%
filter(date == max(date))
price_data_eom <- price_data_eom[ ,c(1, 2, 3)]
我需要的是建立一个新的回报时间序列,比如 price_data_change 。
Price_data_change dput:
structure(list(symbol = c("SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY", "SPY",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "QQQ",
"QQQ", "QQQ", "QQQ", "QQQ", "QQQ", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA", "DIA",
"DIA", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV", "SPLV",
"SPLV", "SPLV"), date = structure(c(1566172800, 1566259200, 1566345600,
1566432000, 1566518400, 1566864000, 1566950400, 1567036800, 1567123200,
1567468800, 1567555200, 1567641600, 1567728000, 1567987200, 1568073600,
1568160000, 1568246400, 1568332800, 1568592000, 1568678400, 1568764800,
1568851200, 1568937600, 1569196800, 1569283200, 1569369600, 1569456000,
1569542400, 1569801600, 1569888000, 1569974400, 1570060800, 1570147200,
1570406400, 1570492800, 1570579200, 1570665600, 1570752000, 1571011200,
1571097600, 1571184000, 1571270400, 1571356800, 1571616000, 1571702400,
1571788800, 1571875200, 1571961600, 1572220800, 1572307200, 1572393600,
1572480000, 1572566400, 1572825600, 1572912000, 1572998400, 1573084800,
1573171200, 1573430400, 1573516800, 1573603200, 1573689600, 1573776000,
1574035200, 1574121600, 1574208000, 1574294400, 1574380800, 1574640000,
1574726400, 1574812800, 1574985600, 1575244800, 1575331200, 1575417600,
1575504000, 1575590400, 1575849600, 1575936000, 1576022400, 1576108800,
1576195200, 1576454400, 1576540800, 1576627200, 1576713600, 1576800000,
1577059200, 1577145600, 1577404800, 1577664000, 1577750400, 1577923200,
1578009600, 1578268800, 1578355200, 1578441600, 1578528000, 1578614400,
1578873600, 1578960000, 1579046400, 1579132800, 1579219200, 1579564800,
1579651200, 1579737600, 1579824000, 1580083200, 1580169600, 1580256000,
1580342400, 1580428800, 1566172800, 1566259200, 1566345600, 1566432000,
1566518400, 1566864000, 1566950400, 1567036800, 1567123200, 1567468800,
1567555200, 1567641600, 1567728000, 1567987200, 1568073600, 1568160000,
1568246400, 1568332800, 1568592000, 1568678400, 1568764800, 1568851200,
1568937600, 1569196800, 1569283200, 1569369600, 1569456000, 1569542400,
1569801600, 1569888000, 1569974400, 1570060800, 1570147200, 1570406400,
1570492800, 1570579200, 1570665600, 1570752000, 1571011200, 1571097600,
1571184000, 1571270400, 1571356800, 1571616000, 1571702400, 1571788800,
1571875200, 1571961600, 1572220800, 1572307200, 1572393600, 1572480000,
1572566400, 1572825600, 1572912000, 1572998400, 1573084800, 1573171200,
1573430400, 1573516800, 1573603200, 1573689600, 1573776000, 1574035200,
1574121600, 1574208000, 1574294400, 1574380800, 1574640000, 1574726400,
1574812800, 1574985600, 1575244800, 1575331200, 1575417600, 1575504000,
1575590400, 1575849600, 1575936000, 1576022400, 1576108800, 1576195200,
1576454400, 1576540800, 1576627200, 1576713600, 1576800000, 1577059200,
1577145600, 1577404800, 1577664000, 1577750400, 1577923200, 1578009600,
1578268800, 1578355200, 1578441600, 1578528000, 1578614400, 1578873600,
1578960000, 1579046400, 1579132800, 1579219200, 1579564800, 1579651200,
1579737600, 1579824000, 1580083200, 1580169600, 1580256000, 1580342400,
1580428800, 1566172800, 1566259200, 1566345600, 1566432000, 1566518400,
1566864000, 1566950400, 1567036800, 1567123200, 1567468800, 1567555200,
1567641600, 1567728000, 1567987200, 1568073600, 1568160000, 1568246400,
1568332800, 1568592000, 1568678400, 1568764800, 1568851200, 1568937600,
1569196800, 1569283200, 1569369600, 1569456000, 1569542400, 1569801600,
1569888000, 1569974400, 1570060800, 1570147200, 1570406400, 1570492800,
1570579200, 1570665600, 1570752000, 1571011200, 1571097600, 1571184000,
1571270400, 1571356800, 1571616000, 1571702400, 1571788800, 1571875200,
1571961600, 1572220800, 1572307200, 1572393600, 1572480000, 1572566400,
1572825600, 1572912000, 1572998400, 1573084800, 1573171200, 1573430400,
1573516800, 1573603200, 1573689600, 1573776000, 1574035200, 1574121600,
1574208000, 1574294400, 1574380800, 1574640000, 1574726400, 1574812800,
1574985600, 1575244800, 1575331200, 1575417600, 1575504000, 1575590400,
1575849600, 1575936000, 1576022400, 1576108800, 1576195200, 1576454400,
1576540800, 1576627200, 1576713600, 1576800000, 1577059200, 1577145600,
1577404800, 1577664000, 1577750400, 1577923200, 1578009600, 1578268800,
1578355200, 1578441600, 1578528000, 1578614400, 1578873600, 1578960000,
1579046400, 1579132800, 1579219200, 1579564800, 1579651200, 1579737600,
1579824000, 1580083200, 1580169600, 1580256000, 1580342400, 1580428800,
1566172800, 1566259200, 1566345600, 1566432000, 1566518400, 1566864000,
1566950400, 1567036800, 1567123200, 1567468800, 1567555200, 1567641600,
1567728000, 1567987200, 1568073600, 1568160000, 1568246400, 1568332800,
1568592000, 1568678400, 1568764800, 1568851200, 1568937600, 1569196800,
1569283200, 1569369600, 1569456000, 1569542400, 1569801600, 1569888000,
1569974400, 1570060800, 1570147200, 1570406400, 1570492800, 1570579200,
1570665600, 1570752000, 1571011200, 1571097600, 1571184000, 1571270400,
1571356800, 1571616000, 1571702400, 1571788800, 1571875200, 1571961600,
1572220800, 1572307200, 1572393600, 1572480000, 1572566400, 1572825600,
1572912000, 1572998400, 1573084800, 1573171200, 1573430400, 1573516800,
1573603200, 1573689600, 1573776000, 1574035200, 1574121600, 1574208000,
1574294400, 1574380800, 1574640000, 1574726400, 1574812800, 1574985600,
1575244800, 1575331200, 1575417600, 1575504000, 1575590400, 1575849600,
1575936000, 1576022400, 1576108800, 1576195200, 1576454400, 1576540800,
1576627200, 1576713600, 1576800000, 1577059200, 1577145600, 1577404800,
1577664000, 1577750400, 1577923200, 1578009600, 1578268800, 1578355200,
1578441600, 1578528000, 1578614400, 1578873600, 1578960000, 1579046400,
1579132800, 1579219200, 1579564800, 1579651200, 1579737600, 1579824000,
1580083200, 1580169600, 1580256000, 1580342400, 1580428800), tzone = "UTC", class = c("POSIXct",
"POSIXt")), pct_change = c(NA, -0.00705126802258022, 0.0076295823643365,
0.000911372129577493, -0.0289871027904914, 0.00836340543633972,
0.00864197798017339, 0.0132676439349534, 0.00440398257226318,
-0.000810798356291206, 0.00489793052526286, 0.0114929827231985,
0.000219683754035416, -0.000381199008231313, 0.00131133169737176,
0.010991917810175, 0.000373682748859825, -0.00521071094042384,
0.00451341821049712, -0.0021030633585353, -0.000396951964860599,
0.000265269531932268, -0.000743511009830318, 0.0013049347392716,
-0.00813056793136178, 0.00925763580751369, -0.000223907008808232,
-0.00607675661199768, 0.00873983825894247, -0.0133635902764978,
-0.0208797421232863, 0.00453004741296597, 0.0140014184572717,
-0.00576883843872711, -0.0122082203788167, 0.00723162543984982,
0.0044223256789053, 0.00742025243858476, -1.12879704884113e-05,
0.00892911260222545, -0.003158371381325, -0.00293444675847686,
-0.00641035530910329, 0.00618002094835428, -0.00193739666366112,
0.00434189459939495, 0.00262902490336697, 0.00529319220374955,
0.00538440256088661, -0.00252094148539915, 0.00250332946360469,
-0.00557859517438965, 0.0079614460483692, 0.00622168134224251,
0.00532205141852663, 0.000117222019118618, 0.00603613637242996,
0.00487830330011739, -0.00324000838916727, 0.00408155085014259,
0.000433592126059936, 0.00222276531828686, 0.0030160545215308,
-0.0022526835410738, -0.000177690952353848, -0.00239983318733082,
-0.00249896143509873, 0.00607179646137478, 0.00954823288553411,
0.0022605705552182, 0.00564216812988935, -0.00637896135084886,
-0.0124754562916703, -0.00775581065692071, 0.00569166918522415,
0.00124112103370351, 0.0129928141194183, -0.00504178681255622,
-0.00289253057433875, 0.00316222481722851, 0.00567959714170167,
-0.00118210397141011, 0.00682316118912687, -0.00123055997818131,
0.00251013505065878, 0.00507851838137844, 0.00688259209598662,
0.00152543428178451, 0.00113851554419448, -0.00306027578933896,
-0.00881000495213518, -4.08444191885088e-05, 0.0117065712146316,
-0.00425552177565432, 0.00145966772679748, 0.00153747665477344,
0.00729200365549459, 0.00816863853859695, -0.00388911183640276,
0.00506113615628637, -0.000524421144496562, -0.000527232904987283,
0.00935461914322954, 0.00719532047601198, -0.00218435444916451,
0.00211405749760801, 0.0037935624251611, -0.00708170932550047,
-0.0151713091364693, 0.0115679007854261, -0.000606517502859969,
-0.000285331408849807, -0.0223299028268224, NA, -0.00713820798117287,
0.00836044790848391, -0.00202154482032432, -0.0353182226833823,
0.0141104102354773, 0.00522122242364514, 0.0157136831123609,
0.00245759773875338, -0.00471287777023357, 0.00792454568627762,
0.0167965495667055, -0.00154467401568836, -0.00297867260404951,
-0.00133479366342671, 0.0132243454920389, 0.00106412887965016,
-0.00814339285128975, 0.003135656101805, 0.00015853397821113,
-0.00141130988695573, 0.00199053140537531, -0.00668511696518584,
0.00197947203830263, -0.0136825045255637, 0.0144605061411028,
-0.00182964512693314, -0.0132298964228442, 0.0135310050306002,
-0.00954409323260263, -0.0203912367592625, 0.00726991242270702,
0.0151611448409798, -0.00446173424614991, -0.0116493115183752,
0.00749237165054103, 0.00539148308574764, 0.00988192249206834,
0.00099798853242199, 0.011685119624658, -0.0040376820399283,
-0.0032416585250533, -0.0117277468279516, 0.00823813640464417,
-0.00668067470611353, 0.00336702253545742, 0.0106244110300051,
0.00913296812523003, 0.0095490043219622, -0.0100453402547109,
0.00426908848426977, -0.0024424989048777, 0.00778327515730184,
0.00836213457420106, 0.00696821761929882, -0.00236369471824109,
0.00587491451311135, 0.00639015506363758, -0.00266939472850593,
0.00485429685817654, 0.000358108717427969, -2.35470784427697e-05,
0.00312606581554442, -0.00220175821280711, 0.0015857837251658,
-0.00469923421707942, -0.00311904689648374, 0.00450304906628015,
0.01355319728983, 0.00190606519748975, 0.00814185786523741, -0.00724192986523454,
-0.0142595921795975, -0.00889955870419729, 0.00459755438707881,
0.00141855750202651, 0.0145207239752374, -0.00644761544768341,
-0.00260945063844197, 0.00559961194967952, 0.00453976265893421,
0.00150592442801568, 0.00993931284914955, -0.000875997704804331,
0.00320938004354842, 0.00720677161250598, 0.00655457762509905,
0.0026271078044639, 0.00162590865202778, -0.000173955567077819,
-0.00986687564796442, -0.000584218233468253, 0.0188467087530424,
-0.00586463915600189, 0.00406719123643498, 0.00420633280694293,
0.00944668459532235, 0.00983340491680795, -0.00356653702704631,
0.00964427158115961, -0.00294814983965274, -0.0023783965681895,
0.010596038468583, 0.00900931025010597, -0.00066991853569552,
0.00462378034047683, 0.0058483977846343, -0.00659653572476276,
-0.019966692733365, 0.016319252031303, 0.00184260308626063, 2.9881359989614e-05,
-0.0199407408043349, NA, -0.00568416612877022, 0.00849048386902005,
0.00323496247455125, -0.0270819680587169, 0.00718071862329574,
0.0115914076334447, 0.0139557440887082, 0.00571291190856551,
-0.00527310591762021, 0.00317410813932451, 0.0128116170652771,
0.00183410419198282, 0.000902631921553915, 0.00373251348843978,
0.0123911041743647, -0.000768202513886196, -0.00351162695525742,
0.00235482624717099, -0.00319756025999329, 0.000513664695466897,
-0.0016940326536973, -0.00165609071048283, 0.00194705411752941,
-0.00540823820377424, 0.00934959425175741, -0.000738797415971647,
-0.00398001522343873, 0.00854511234819202, -0.0151886970017635,
-0.0212322224568893, 0.00131574992257381, 0.0143890766690982,
-0.00490943160598473, -0.00853199845995925, 0.00484204830453592,
0.00366457087528493, 0.008910671385847, -1.62173647645987e-05,
0.00785852724498612, -0.00206647032991287, -0.00477607511649382,
-0.0116097674230757, 0.00156909537705619, -0.000118548930685692,
0.00300842569143948, 3.00816843590025e-05, 0.00722148970610176,
0.00424721603926472, -0.0020014565391474, 0.0026471968611501,
-0.00757238750350447, 0.00924737640612899, 0.0066262975043559,
0.00736235509351695, -0.000147136137029453, 0.0106412391682828,
0.00249625132902985, -0.000998912688933609, 0.00245005454410154,
0.0028431282361781, 0.00141661029108864, 0.00376379595871277,
-0.00181106233392986, -0.00325401906408325, -0.00272855809781592,
-0.00261592481396991, 0.00793371687318642, 0.0087679388769456,
0.00199033266968672, 0.00315847168227673, -0.00607269137552293,
-0.0137979576487079, -0.0107707891656649, 0.00511756948896947,
0.000563669751792138, 0.0158289582597174, -0.00524812562435421,
-0.0028496328826735, 0.001261749234593, 0.00504157052390556,
-0.0012137702961251, 0.00339138728937936, -0.000283801683018372,
0.00177846990158928, 0.00539022857242646, 0.0055772746666276,
0.00304910104064154, -1.41045709777886e-05, -0.00350241267561584,
-0.00959497893674441, -0.000466007503090515, 0.0146300719082775,
-0.00465710617962732, -4.45658695541451e-05, 2.41656095206888e-05,
0.00776569670885691, 0.00889214913496053, -0.00558431991021557,
0.000922242159961905, 0.00169182395812287, 0.00111439496342614,
0.009911834583405, 0.0057292508730636, -0.00515742577820074,
0.00192517513689488, 0.00172739359194766, -0.00411857621975823,
-0.0144408361627949, 0.00791980977035442, 0.000219949381292016,
0.000815835513242235, -0.0255179508268158, NA, -0.00593269805122579,
0.00435325906745943, 0.00387234657193362, -0.0198964794683915,
0.0118360682420611, 0.00432402341978675, 0.00772154115542016,
0.00660023247247528, 0.0111408614369787, 0.00025761854511716,
-0.00330962085927916, 0.00171048047761619, -0.00754554078041048,
-0.00549800319221863, 0.00815736510230646, 0.00164522902765969,
-0.0091295906429917, 0.00741396392053281, 0.00410475735844478,
0.00178518761972783, 0.000505198430249029, 0.00240585082029477,
0.00278374721577514, 0.00238298238283241, 0.00391606633195719,
0.00685389824079512, -0.00429556654168069, 0.00672253388694941,
-0.00985617918450468, -0.0154038820556285, 0.00130624429395181,
0.0146657939411589, -0.00630503440383061, -0.00877249235324575,
0.00324297663778163, 0.000662969308091965, -0.00251977649941539,
-0.00151878358459569, 0.000166702791383943, -0.00119735668589561,
-0.00431305371033045, 0.00113104206964162, 0.00418715021268653,
-0.00353582519538572, 0.00370135160720119, 0.00238659385040515,
-0.00453422702917764, -0.00513522296857108, 0.00110618851182474,
0.00673828216809951, -0.00359731241023908, -0.00209896934373398,
-0.00458241126588036, 0.00117732391090608, 0.00444397498433139,
-0.000790113740752199, 0.000843854819615038, -0.00344364301777188,
0.0016299397015136, 0.0078136895817578, 0.0039096515770706, -0.00192490630788568,
-0.0013005174578778, 0.000110803349756897, 0.000979844319215792,
-0.00685099890042137, 0.00403600719889159, 0.00117184558967153,
0.00731197771691878, 0.00329211363511169, -0.00439161686954743,
-0.0133984400788203, -0.00029439291537643, 0.00497189765533693,
0.00223291440979794, 0.00605431077923542, -0.00257861997391195,
-0.00386889580621453, -0.00246224934147461, -0.0051737830897221,
0.00241108263172675, 0.00554977454001283, -0.00266717308088611,
0.00434945418498915, 0.00479487632394713, 0.00786003057372518,
-0.0058558325125128, 0.00248853627597763, -0.00260505169132175,
-0.00497556359161503, 0.00199739775233649, -0.00476935499039827,
0.00506673333793305, -0.0013142964477619, -0.00151796083457161,
0.00493104881097339, 0.00641894792311747, 0.00020228353939516,
0.00470931444178992, -0.000534345767010132, 0.00519594248088847,
0.00883785946578873, 0.00860470619069814, 0.00385912616126708,
0.00265969099931568, 0.00877077478621976, 0.000216294845811518,
-0.00574846029740316, 0.00652711989545234, -0.00194696303225052,
0.00607948303605003, -0.0136417864075905)), row.names = c(NA,
-452L), groups = structure(list(symbol = c("DIA", "QQQ", "SPLV",
"SPY"), .rows = structure(list(227:339, 114:226, 340:452, 1:113), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, 4L), class = c("tbl_df",
"tbl", "data.frame"), .drop = TRUE), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))
在这个新的时间序列中,我需要在 1 月份获得在上个月最后一天具有最高 roll_sharpe 的 ETF 的每日回报,其他月份依此类推。 感谢所有贡献者。如果您需要进一步的数据或解释,请告诉我。