我有一个与此类似的 DataFrame:
Chr Start_Position End_Position Type
1 10000 10001 SNP
5 45321 45327 INS
12 44700 44710 DEL
我需要根据 Type
是什么来更改某些单元格的值:
SNP
需要 Start_Position
+ 1INS
需要 End_Position
+ 1DEL
需要 Start_Position
+ 1我的问题是我当前的解决方案非常冗长。我尝试过的(dataframe
是原始数据源):
snp_records = dataframe.loc[dataframe["Type"] == "SNP", :]
del_records = dataframe.loc[dataframe["Type"] == "DEL", :]
ins_records = dataframe.loc[dataframe["Type"] == "INS", :]
snp_records.loc[:, "Start_Position"] = snp_records["Start_Position"].add(1)
del_records.loc[:, "Start_Position"] = del_records["Start_Position"].add(1)
ins_records.loc[:, "End_Position"] = ins_records["End_Position"].add(1)
dataframe.loc[snp_records.index, "Start_Position"] = snp_records["Start_Position"]
dataframe.loc[del_records.index, "Start_Position"] = del_records["Start_Position"]
dataframe.loc[ins_records.index, "End_Position"] = ins_records["End_Position"]
由于我必须为比示例更多的列执行此操作(但类似的概念),这变得非常冗长且冗长,并且可能容易出错(实际上,我在输入示例时犯了几个错误),原因是所有重复的行。
This question is similar to mine,但那里的值是预定义的,而我需要自己从数据中获取它们。
答案 0 :(得分:4)
你可以这样做:
df.loc[df['Type'].isin(['SNP','INS']), 'Start_Position'] += 1
df.loc[df['Type'].eq('INS'), 'End_Position'] += 1
答案 1 :(得分:3)
对于一般解决方案,您可以将列表传递给 Series.isin
并传递给 DataFrame.loc
以通过掩码设置值:
start = ['SNP','DEL']
end = ['INS']
df.loc[df['Type'].isin(start), 'Start_Position'] += 1
df.loc[df['Type'].isin(end), 'End_Position'] += 1
print (df)
Chr Start_Position End_Position Type
0 1 10001 10001 SNP
1 5 45321 45328 INS
2 12 44701 44710 DEL
在一个 DataFrame.loc
中传递两列的另一个想法:
m = pd.concat([df['Type'].isin(start), df['Type'].isin(end)], axis=1)
df[[ 'Start_Position', 'End_Position']] += m.to_numpy()
print (df)
Chr Start_Position End_Position Type
0 1 10001 10001 SNP
1 5 45321 45328 INS
2 12 44701 44710 DEL
或者:
m = np.vstack((df['Type'].isin(start), df['Type'].isin(end))).T
df[[ 'Start_Position', 'End_Position']] += m
print (df)
Chr Start_Position End_Position Type
0 1 10001 10001 SNP
1 5 45321 45328 INS
2 12 44701 44710 DEL
答案 2 :(得分:2)
试试 np.where
start = ['SNP','DEL']
end = ['INS']
df['Start_Position'] = np.where(df['Type'].isin(start),df['Start_Position']+1,df['Start_Position'])
df['End_Position'] = np.where(df['Type'].isin(end ),df['End_Position']+1,df['End_Position'])