对于我的学士论文,我必须在 Tensorflow 2.4.0 中构建一个 DC-GAN。我已经创建了自己的数据集并对其进行了预处理,预处理后的数据很好,可以用来训练模型。现在我想用我的数据集训练我的简单 DC-GAN,但这不起作用。
我的问题是,为什么我的数据集不适用于模型?或者我必须对模型进行哪些更改才能使数据集能够使用它?
我收到以下错误:ValueError: Layer sequential_1 expects 1 input(s), but it received 2 input tensors. Inputs received: [<tf.Tensor 'images:0' shape=(416, 416, 3) dtype=float32>, <tf.Tensor 'images_1:0' shape=(100, 5) dtype=float32>]
我的数据集如下所示:<MapDataset shapes: ((416, 416, 3), (None, 5)), types: (tf.float32, tf.float32)>
似乎我的模型在我的数据集形状上挣扎,但我尝试了多种方法来重塑我的数据集,但我收到了不同的错误消息。
以下是我的算法摘要:
这是我的代码:
import tensorflow as tf
from tensorflow.keras import layers
import time
from dataHandler.dataLoader.loadData import load_dataset
from dataHandler.preProcessData.configuratorPath import tfRecordPath, classesPath
BUFFER_SIZE = 60000
BATCH_SIZE = 256
EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16
# return Dataset in form <MapDataset shapes: ((416, 416, 3), (None, 5)), types: (tf.float32, tf.float32)>
train_dataset=load_dataset(tfRecordPath,classesPath,size=416)
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
generator = make_generator_model()
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
discriminator = make_discriminator_model()
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# We will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
train_step(image_batch)
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
train(train_dataset, EPOCHS)