如何从python字典列表中的特定键中提取值?

时间:2021-01-17 20:58:48

标签: python list

如果我有以下类型的数据 - 字典列表,我如何从中提取一些关键值?

comps = [
{
    "name":'Test1',
    "p_value":0.02,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test2',
    "p_value":0.05,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test3',
    "p_value":0.03,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test4',
    "p_value":0.07,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test5',
    "p_value":0.03,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test6',
    "p_value":0.02,
    "group0_null": 0.0,
    "group1_null": 0.0,
},{
    "name":'Test7',
    "p_value":0.01,
    "group0_null": 0.0,
    "group1_null": 0.0,
}]

结果

根据上面的数据,假设我只想要 namep_value。我怎样才能得到这个结果。

[{
    "name":'Test1',
    "p_value":0.02,
},{
    "name":'Test2',
    "p_value":0.05,
},{
    "name":'Test3',
    "p_value":0.03,
},{
    "name":'Test4',
    "p_value":0.07,
},{
    "name":'Test5',
    "p_value":0.03,
},{
    "name":'Test6',
    "p_value":0.02,
},{
    "name":'Test7',
    "p_value":0.01,
}]

这说明一切

[c for c in comps]

这仅显示名称 [c['name'] for c in comps]

但是如果我这样做:

[c['name','p_value'] for c in comps ]

我收到错误:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-94-b29459f7b089> in <module>
----> 1 [c['name','p_value'] for c in comps['continuous_explainers'] ]
      2 
      3 # cont_comps = []
      4 
      5 # for c in comps['continuous_explainers']:

<ipython-input-94-b29459f7b089> in <listcomp>(.0)
----> 1 [c['name','p_value'] for c in comps['continuous_explainers'] ]
      2 
      3 # cont_comps = []
      4 
      5 # for c in comps['continuous_explainers']:

KeyError: ('name', 'p_value')

真正的数据字典比这个大很多。我想这样做,以便我可以列出需要的东西。

更新

由于有人指出我展示的数据结构与我从服务器收到的不同,这里是我用来提取数据的代码。

# get all comparisons
comps = source.get_comparison(name='Pr1 vs. Rest')

# only take the continuous explainers 
comps['continuous_explainers'][1:5]

数据

[{'name': 'Gender',
  'column_index': 2,
  'ks_score': 0.0022329709328575142,
  'p_value': 1.0,
  'quartiles': [[0.0, 0.0, 1.0, 1.0, 2.0], [0.0, 0.0, 1.0, 1.0, 2.0]],
  't_test_p_value': 0.8341377317414621,
  'diff_means': 0.0014959875249118681,
  'primary_group_mean': 0.6312769010043023,
  'secondary_group_mean': 0.6297809134793905,
  'ks_sign': '+',
  'group0_percent_null': 0.0,
  'group1_percent_null': 0.0},
 {'name': 'Gender_Missing_color',
  'column_index': 3,
  'ks_score': 2.220446049250313e-16,
  'p_value': 1.0,
  'quartiles': [[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]],
  't_test_p_value': 1.0,
  'diff_means': 0.0,
  'primary_group_mean': 1.0,
  'secondary_group_mean': 1.0,
  'ks_sign': '0',
  'group0_percent_null': 0.9966523194643712,
  'group1_percent_null': 0.9959153360564427},
 {'name': 'Gender_Missing',
  'column_index': 4,
  'ks_score': 0.0007369834078797544,
  'p_value': 1.0,
  'quartiles': [[0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 1.0]],
  't_test_p_value': 0.40301091478187256,
  'diff_means': -0.0007369834079284866,
  'primary_group_mean': 0.0033476805356288893,
  'secondary_group_mean': 0.004084663943557376,
  'ks_sign': '-',
  'group0_percent_null': 0.0,
  'group1_percent_null': 0.0},
 {'name': 'Male',
  'column_index': 5,
  'ks_score': 0.0029699543407862294,
  'p_value': 0.9999999999915384,
  'quartiles': [[0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0, 1.0]],
  't_test_p_value': 0.6740956861786738,
  'diff_means': 0.0029699543407684104,
  'primary_group_mean': 0.6245815399330444,
  'secondary_group_mean': 0.621611585592276,
  'ks_sign': '+',
  'group0_percent_null': 0.0,
  'group1_percent_null': 0.0}]

这是我得到的输出。如上所述,我只需要这个字典列表中的一些数据。

3 个答案:

答案 0 :(得分:1)

您可以为 comparisons 中的每个对象创建一个新的 dict,并仅使用 namep_value 键对其进行初始化。

ex = [{'name': d['name'], 'p_value': d['p_value']} for d in comparisons]

答案 1 :(得分:1)

我仍然不确定如何使上述答案对我有用。但是,我想出了另一种方法来做到这一点:

test = [(c['name'],c['p_value'], c['group0_percent_null']) for c in comps]
pd.DataFrame(test)

    0   1   2
0   ID  5.374590e-13    0.000000
1   Gender  1.000000e+00    0.000000
2   Gender_Missing_color    1.000000e+00    0.996652
3   Gender_Missing  1.000000e+00    0.000000
4   Male    1.000000e+00    0.000000
... ... ... ...

它给了我想要的结果。

答案 2 :(得分:-1)

试试

[{'name':c['name'], 'p_value':c['p_value']} for c in comps]