我有一个点列表= [p1,p2,p3 ...] 其中p1 = [x1,y1],p2 = [x2,y2] ......
我想使用scipy.spatial.Delaunay对这些点云进行三角测量然后绘制它
我该怎么做?
Delaunay的文档非常缺乏
到目前为止我有这段代码
from subprocess import Popen, PIPE
import os
os.environ['point_num'] = "2000"
cmd = 'rbox $point_num D2 | tail -n $point_num'
sub_process = Popen(cmd, shell=True,stdout=PIPE,stderr=PIPE)
output = sub_process.communicate()
points = [line.split() for line in output[0].split('\n') if line]
x = [p[0] for p in points if p]
y = [p[1] for p in points if p]
import matplotlib.pyplot as plt
plt.plot(x,y,'bo')
from scipy.spatial import Delaunay
dl = Delaunay(points)
convex = dl.convex_hull
from numpy.core.numeric import reshape,shape
convex = reshape(convex,(shape(convex)[0]*shape(convex)[1],1))
convex_x = [x[i] for i in convex]
convex_y = [y[i] for i in convex]
plt.plot(convex_x,convex_y,'r')
plt.show()
由于
答案 0 :(得分:16)
编辑:也绘制凸包
import numpy as np
from scipy.spatial import Delaunay
points = np.random.rand(30, 2) # 30 points in 2-d
tri = Delaunay(points)
# Make a list of line segments:
# edge_points = [ ((x1_1, y1_1), (x2_1, y2_1)),
# ((x1_2, y1_2), (x2_2, y2_2)),
# ... ]
edge_points = []
edges = set()
def add_edge(i, j):
"""Add a line between the i-th and j-th points, if not in the list already"""
if (i, j) in edges or (j, i) in edges:
# already added
return
edges.add( (i, j) )
edge_points.append(points[ [i, j] ])
# loop over triangles:
# ia, ib, ic = indices of corner points of the triangle
for ia, ib, ic in tri.vertices:
add_edge(ia, ib)
add_edge(ib, ic)
add_edge(ic, ia)
# plot it: the LineCollection is just a (maybe) faster way to plot lots of
# lines at once
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
lines = LineCollection(edge_points)
plt.figure()
plt.title('Delaunay triangulation')
plt.gca().add_collection(lines)
plt.plot(points[:,0], points[:,1], 'o', hold=1)
plt.xlim(-1, 2)
plt.ylim(-1, 2)
# -- the same stuff for the convex hull
edges = set()
edge_points = []
for ia, ib in tri.convex_hull:
add_edge(ia, ib)
lines = LineCollection(edge_points)
plt.figure()
plt.title('Convex hull')
plt.gca().add_collection(lines)
plt.plot(points[:,0], points[:,1], 'o', hold=1)
plt.xlim(-1, 2)
plt.ylim(-1, 2)
plt.show()
请注意,仅仅用于计算复杂船体的scipy.spatial.Delaunay
可能有点过分,因为仅计算船体原则上比计算三角测量更快。不幸的是,Scipy还没有用于直接用Qhull计算外壳的接口。