我正在将一个很大的Excel文件读入一个数据框
Date Lane Lane Name Direction DirectionName Speed (mph) Headway (s) Gap (s) Flags Flag Text
0 2018-02-02 00:00:03.000 6 SB_NS 2 South 38.525 NaN NaN 5 Friday
1 2018-02-02 00:00:22.010 5 SB_MID 2 South 32.310 NaN NaN 5 Friday
2 2018-02-02 00:00:22.020 4 SB_OS 2 South 44.739 NaN NaN 5 Friday
3 2018-02-02 00:00:36.040 6 SB_NS 2 South 33.554 NaN NaN 5 Friday
4 2018-02-02 00:00:49.070 6 SB_NS 2 South 39.768 12.300 11.847 5 Friday
... ... ... ... ... ... ... ... ... ... ...
503763 2018-02-27 23:59:00.090 2 NB_MID 1 North 32.932 4.415 3.833 2 Tuesday
503764 2018-02-27 23:59:29.090 6 SB_NS 2 South 29.825 65.500 64.700 2 Tuesday
503765 2018-02-27 23:59:32.050 4 SB_OS 2 South 29.205 236.000 235.848 2 Tuesday
503766 2018-02-27 23:59:33.070 6 SB_NS 2 South 37.283 3.330 3.462 2 Tuesday
503767 2018-02-27 23:59:58.050 1 NB_NS 1 North 36.661 76.000 75.669 2 Tuesday
503768 rows × 10 columns
我删除了不需要的列。我只对[DirectionName = South]的某些日期和数据感兴趣。我还留下了“标志文字”,而该文本只是一周中的一天。我还设置了DateTime格式并使其成为索引。
下面的代码是我用来指定要使用的日期的代码:
#df.sort_index(inplace=True)
df = df.loc[(df.DirectionName =="South")]
# Specify dates to use
myDates = ['2018-02-02', '2018-02-09', '2018-02-16', '2018-02-23']
df_in = df[pd.to_datetime(df.index.date).isin(myDates)]
df
哪个给我这个输出:
DirectionName FlagText
Date
2018-02-02 00:00:03.000 South Friday
2018-02-02 00:00:22.010 South Friday
2018-02-02 00:00:22.020 South Friday
2018-02-02 00:00:36.040 South Friday
2018-02-02 00:00:49.070 South Friday
... ... ...
2018-02-27 23:58:20.070 South Tuesday
2018-02-27 23:58:23.040 South Tuesday
2018-02-27 23:59:29.090 South Tuesday
2018-02-27 23:59:32.050 South Tuesday
2018-02-27 23:59:33.070 South Tuesday
251528 rows × 2 columns
我希望能够计算所选日期的总行数。例如,我想计算日期02-02-2018的每一行。最终,我希望能够计算当天(每小时0am> 23:59 pm)每小时的总数。
这是我想要的输出的一个示例:
DirectionName Flag Text Count
Date
2018-02-02 01:00:00.000 South Friday 234
2018-02-02 02:00:00.000 South Friday 554
2018-02-02 03:00:00.000 South Friday 785
2018-02-02 04:00:00.000 South Friday 124
2018-02-02 05:00:00.000 South Friday 345
... ... ...
我曾尝试查看其他帖子/文档,但由于将日期放入索引而感到困惑。我认为这更合理。
我们将非常感谢您的帮助和澄清
答案 0 :(得分:0)
您可以创建另一个列,该列的(a)天日期(b)日期直到小时。
类似这样的东西:
df['day-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
df['hour-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d %H')
然后对以下各列进行分组依据:
day_sum_df = df.groupby(['day-date']).sum()
hour_sum_df = df.groupby(['hour-date']).sum()
答案 1 :(得分:0)
使用分组依据对日期进行分组,然后使用计数。
# if your date column is in date plus time then convert it to date then group by date then count of Date column
df.groupby([df['Date'].dt.date])['Date'].count()
如果您的日期已经是日期格式,则可以简单地
df.groupby('Date')['Date'].count()