我坚持了解使用的方法。我有以下数据框:
test2
我需要:
预期输出如下:
答案 0 :(得分:1)
以下代码使用.drop_duplicates()和.duplicated()从数据框中保留或丢弃具有重复值的行。
您如何计算一个月的差额?一个月可以是28、30或31天。您可以将最终结果除以30,并获得月数差异的指示。所以我暂时保留了几天。
import pandas as pd
df = {'CODE': ['BBLGLC70M','BBLGLC70M','ZZTNRD77', 'ZZTNRD77', 'AACCBD', 'AACCBD', 'BCCDN', 'BCCDN', 'BCCDN'],
'DATE': ['16/05/2019','25/09/2019', '16/03/2020', '27/02/2020', '16/07/2020', '21/07/2020', '13/02/2020', '23/07/2020', '27/02/2020'],
'TYPE': ['PRI', 'PRI', 'PRI', 'PRI', 'PUB', 'PUB', 'PUB', 'PRI', 'PUB'],
'DESC' : ['KO', 'OK', 'KO', 'KO', 'KO', 'OK', 'KO', 'OK', 'OK']
}
df = pd.DataFrame(df)
df['DATE'] = pd.to_datetime(df['DATE'], format = '%d/%m/%Y')
# only keep rows that have the same code and type
df = df[df.duplicated(subset=['CODE', 'TYPE'], keep=False)]
# throw out rows that have the same code and desc
df = df.drop_duplicates(subset=['CODE', 'DESC'], keep=False)
# find previous date
df = df.sort_values(by=['CODE', 'DATE'])
df['previous_date'] = df.groupby('CODE')['DATE'].transform('shift')
# drop rows that don't have a previous date
df = df.dropna()
# calculate the difference between current date and previous date
df['difference_in_dates'] = (df['DATE'] - df['previous_date'])
这将导致以下df:
CODE DATE TYPE DESC previous_date difference_in_dates
AACCBD 2020-07-21 PUB OK 2020-07-16 5 days
BBLGLC70M 2019-09-25 PRI OK 2019-05-16 132 days
BCCDN 2020-02-27 PUB OK 2020-02-13 14 days