我是ajax和回调函数的新手,如果我的概念都错了,请原谅我。
问题:我可以将 回调函数 作为参数发送给另一个执行回调的函数吗?
function firstFunction(){
//some code
//a callback function is written for $.post() to execute
secondFunction("var1","var2",callbackfunction);
}
function secondFunction(var1, var2, callbackfunction) {
params={}
if (event != null) params = event + '&' + $(form).serialize();
// $.post() will execute the callback function
$.post(form.action,params, callbackfunction);
}
答案 0 :(得分:111)
烨。函数引用就像任何其他对象引用一样,您可以将它们传递给您的内容。
这是一个更具体的例子:
function foo() {
console.log("Hello from foo!");
}
function caller(f) {
// Call the given function
f();
}
function indirectCaller(f) {
// Call `caller`, who will in turn call `f`
caller(f);
}
// Do it
indirectCaller(foo); // alerts "Hello from foo!"
您还可以传递foo
的参数:
function foo(a, b) {
console.log(a + " + " + b + " = " + (a + b));
}
function caller(f, v1, v2) {
// Call the given function
f(v1, v2);
}
function indirectCaller(f, v1, v2) {
// Call `caller`, who will in turn call `f`
caller(f, v1, v2);
}
// Do it
indirectCaller(foo, 1, 2); // alerts "1 + 2 = 3"
答案 1 :(得分:12)
另外,可以很简单:
if( typeof foo == "function" )
foo();
答案 2 :(得分:10)
如果您使用Google javascript callback function example
,则会获得Getting a better understanding of callback functions in JavaScript
这是如何做回调函数:
function f() {
alert('f was called!');
}
function callFunction(func) {
func();
}
callFunction(f);
答案 3 :(得分:2)
是的,当然,函数是对象,可以传递,但当然你必须声明它:
function firstFunction(){
//some code
var callbackfunction = function(data){
//do something with the data returned from the ajax request
}
//a callback function is written for $.post() to execute
secondFunction("var1","var2",callbackfunction);
}
一个有趣的事情是你的回调函数也可以访问你在firstFunction()中声明的每个变量(javascript中的变量都有本地范围)。
答案 4 :(得分:0)
CoffeeScript
的示例:
test = (str, callback) ->
data = "Input values"
$.ajax
type: "post"
url: "http://www.mydomain.com/ajaxscript"
data: data
success: callback
test (data, textStatus, xhr) ->
alert data + "\t" + textStatus
答案 5 :(得分:0)
您可以像这样使用JavaScript CallBak:
import pickle
import json
import random
import tflearn
import tensorflow
import numpy
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8,
show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])[0]
results_index = numpy.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.8:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
else:
print("I didn't get that, please check the question and try
again.")
chat()
或Java脚本承诺:
var a;
function function1(callback) {
console.log("First comeplete");
a = "Some value";
callback();
}
function function2(){
console.log("Second comeplete:", a);
}
function1(function2);