tensorflow-datasets
模块遇到了一些麻烦。使用stanford_dogs
数据集,我将图像调整为[180,180]
的大小,但是在训练模型时,从错误消息中,看来tensorflow
正在尝试以原始大小加载图像。 / p>
我在做什么错了?
下面复制错误(和错误)的代码。数据集在750mb
附近。可以将其复制粘贴到google colab
中并运行以进行复制。
import io
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
def _normalize_img(img, label):
img = tf.cast(img, tf.float32) / 255.
img = tf.image.resize(img,[180,180])
return (img, label)
train_dataset, test_dataset = tfds.load(name="stanford_dogs", split=['train', 'test'], as_supervised=True)
train_dataset = train_dataset.shuffle(1024).batch(32)
train_dataset = train_dataset.map(_normalize_img)
test_dataset = test_dataset.batch(32)
test_dataset = test_dataset.map(_normalize_img)
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(64,2,padding='same',activation='relu',input_shape=(180,180,3)),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(32,2,padding='same',activation='relu'),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120,activation='softmax')
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss='sparse_categorical_crossentropy')
history = model.fit(
train_dataset,
epochs=5)
失败,并显示错误:
InvalidArgumentError: Cannot batch tensors with different shapes in component 0. First element had shape [278,300,3] and element 1 had shape [375,500,3].
[[node IteratorGetNext (defined at <ipython-input-29-15023f95f627>:39) ]] [Op:__inference_train_function_4908]
答案 0 :(得分:0)
您遇到此错误,因为tf.data.Dataset
API无法创建一批具有不同形状的张量。由于批处理函数将返回形状为(batch, height, width, channels)
的张量,因此height
,width
和channels
的值在整个数据集中必须保持恒定。您可以在Introduction to Tensors guide中详细了解原因。
调整大小后进行批处理将解决您的问题:
train_dataset = train_dataset.shuffle(1024)
train_dataset = train_dataset.map(_normalize_img)
# we batch once every image is the same size
train_dataset = train_dataset.batch(32)