我正在尝试处理下面指定的天气数据。我以为自己在正确的轨道上,但是没有在正确的庄园中使用pivot_longer,并且会导致部分重复。
任何人都可以提供有关如何编辑代码的建议吗?我想一种方法是将数据帧拆分为几个数据帧(即第一个数据帧-jan,年,第二个数据帧-feb,年)后执行ivot_longer。
maxT <- read.table('https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmax/ranked/England_S.txt', skip = 5, header = TRUE) %>%
select(c(1:24)) %>%
pivot_longer(cols = seq(2,24,2) , values_to = "year") %>%
mutate_at(c(1:12), ~as.numeric(as.character(.))) %>%
pivot_longer(cols = c(1:12), names_to = "month", values_to = "tmax") %>%
mutate(month = match(str_to_title(month), month.abb),
date = as.Date(paste(year, month, 1, sep = "-"), format = "%Y-%m-%d")) %>%
select(-c("name","year","month")) %>%
arrange(date)
答案 0 :(得分:1)
这是<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>
<div id='main-menu' class='main-menu'>
<div class='container-menu'>
<nav class='navigation'>
<span class='hamburger-menu'>Navigate
<span class='burger-1'></span>
<span class='burger-2'></span>
<span class='burger-3'></span>
</span>
<ul class='core-menu'>
<li><a href='#'>Product<span class='toggle'></span></a>
<ul class='dropdown'>
<li><a href='#'>Windows 10<span class='toggle2'></span></a></a>
<ul class='dropdown2'>
<li><a href='#'>Windows 10 Pro</a></li>
<li><a href='#'>Windows 10 Home</a></li>
<li><a href='#'>Profesional</a></li>
</ul>
</li>
<li><a href='#'>Windows Phone</a></li>
<li><a href='#'>Laptop</a></li>
</ul>
</li>
<li><a href='#'>Featured<span class='toggle'></a>
<ul class='dropdown'>
<li><a href='#'>Cortana</a></li>
<li><a href='#'>Xboct</a></li>
<li><a href='#'>Microsoft Edge</a></li>
</ul>
</li>
<li><a href='#'>Devices</a></li>
<li><a href='#'>Help</a></li>
</ul>
</nav>
</div>
</div>
的一个选项,使用tidyverse
map2
-输出
library(dplyr)
library(purrr)
list_df <- maxT %>%
select(seq(1, ncol(.), by = 2)) %>%
map2(maxT %>%
select(seq(2, ncol(.), by = 2)), bind_cols) %>%
imap( ~ .x %>%
rename(!! .y := `...1`, year = `...2`))
map(list_df, head)
#$jan
# A tibble: 6 x 2
# jan year
# <dbl> <int>
#1 9.9 1916
#2 9.8 2007
#3 9.7 1921
#4 9.7 2008
#5 9.5 1990
#6 9.4 1975
#$feb
# A tibble: 6 x 2
# feb year
# <dbl> <int>
#1 11.2 2019
#2 10.7 1998
#3 10.7 1990
#4 10.3 2002
#5 10.3 1945
#6 10 2020
# ...
答案 1 :(得分:0)
我们可以使用split.default
拆分2列的组。
list_df <- split.default(maxT, ceiling(seq_along(maxT)/2))
数据
maxT <- read.table('https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmax/ranked/England_S.txt', skip = 5, header = TRUE) %>%
select(c(1:24))