我想训练逻辑回归模型,然后创建一个以特定方式显示边界线的图。
到目前为止我的工作
SELECT 332 IN UNNEST([663, 332, 334]) AS contains_value;
但是我发现它很难读。我想在左上角为每个分类和图例添加其他标记。就像下面的图片一样:
您知道我该如何更改吗?我玩过import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from matplotlib.colors import ListedColormap
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target
logreg = LogisticRegression(C=1e5)
# Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X, Y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
plt.scatter(X[:, 0], X[:,1], c=Y, marker='x',edgecolors='k', cmap=cmap_bold)
plt.xlabel('Sepal length'),
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
,marker ='s'
,但是它们改变了散点图上的所有点,而不是一种特定的分类。
答案 0 :(得分:2)
由于要使用分类值进行绘制,因此可以分别绘制每个类:
# Replace this
# plt.scatter(X[:, 0], X[:,1], c=Y, marker='x',edgecolors='k', cmap=cmap_bold)
# with this
markers = 'sxo'
for m,i in zip(markers,np.unique(Y)):
mask = Y==i
plt.scatter(X[mask, 0], X[mask,1], c=cmap_bold.colors[i],
marker=m,edgecolors='k', label=i)
plt.legend()
输出:
答案 1 :(得分:1)
您需要将每种标记类型的一次调用更改为plt.scatter
,因为与颜色一样,matplotlib不允许传递多种标记类型。
情节代码变成类似
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
X0 = X[Y==0]
X1 = X[Y==1]
X2 = X[Y==2]
Y0 = Y[Y==0]
Y1 = Y[Y==1]
Y2 = Y[Y==2]
plt.scatter(X0[:, 0], X0[:,1], marker='s',color="red")
plt.scatter(X1[:, 0], X1[:,1], marker='x',color="blue")
plt.scatter(X2[:, 0], X2[:,1], marker='o',color="green")
plt.xlabel('Sepal length'),
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
,您可以分别设置每个类别的标记类型和颜色。您还可以为标记类型创建一个列表,为颜色创建另一个列表,并使用循环。
答案 2 :(得分:1)
X
和Y
创建数据框,然后用seaborn.scatterplot
绘制数据点比较容易。
seaborn
是matplotlib的高级api import numpy as np
import matplotlib.pyplot as plt # version 3.3.1
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from matplotlib.colors import ListedColormap
import seaborn # versuin 0.11.0
import pandas # version 1.1.3
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
# seaborn.scatterplot palette parameter takes a list
palette = ['#FF0000', '#00FF00', '#0000FF']
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target
# add X & Y to dataframe
df = pd.DataFrame(X, columns=iris.feature_names[:2])
df['label'] = Y
# map the number values to the species name and add it to the dataframe
species_map = dict(zip(range(3), iris.target_names))
df['species'] = df.label.map(species_map)
logreg = LogisticRegression(C=1e5)
# Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X, Y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(8, 6))
plt.pcolormesh(xx, yy, Z, cmap=cmap_light, shading='auto')
# Plot also the training points
# add data points using seaborn
sns.scatterplot(data=df, x='sepal length (cm)', y='sepal width (cm)', hue='species',
style='species', edgecolor='k', alpha=0.5, palette=palette, s=70)
# change legend location
plt.legend(title='Species', loc=2)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
# plt.xticks(())
# plt.yticks(())
plt.show()
alpha=0.5
与sns.scatterplot
一起使用,以显示'versicolor'
和'virginica'
的某些值重叠。species
标签而不是名称,请将hue='species'
更改为hue='label'
。