警告消息:[fit_resamples()]中的所有模型均失败。请参阅`.notes`列

时间:2020-10-14 20:56:38

标签: r logistic-regression glm tidymodels r-recipes

我已经使用setFn(() => fnToPutInState); 软件包中的recipe()函数来插补缺失值并修复不平衡的数据。

这是我的数据;

tidymodels

这是我的代码;

mer_df <- mer2 %>%
  filter(!is.na(laststagestatus2)) %>% 
  select(Id, Age_Range__c, Gender__c, numberoflead, leadduration, firsttouch, lasttouch, laststagestatus2)%>%
  mutate_if(is.character, factor) %>%
  mutate_if(is.logical, as.integer)


# A tibble: 197,836 x 8
   Id    Age_Range__c Gender__c numberoflead leadduration firsttouch lasttouch
   <fct> <fct>        <fct>            <int>        <dbl> <fct>      <fct>    
 1 0010~ NA           NA                   2     5.99     Dealer IB~ Walk in  
 2 0010~ NA           NA                   1     0        Online Se~ Online S~
 3 0010~ NA           NA                   1     0        Walk in    Walk in  
 4 0010~ NA           NA                   1     0        Online Se~ Online S~
 5 0010~ NA           NA                   2     0.0128   Dealer IB~ Dealer I~
 6 0010~ NA           NA                   1     0        OB Call    OB Call  
 7 0010~ NA           NA                   1     0        Dealer IB~ Dealer I~
 8 0010~ NA           NA                   4    73.9      Dealer IB~ Walk in  
 9 0010~ NA           Male                24     0.000208 OB Call    OB Call  
10 0010~ NA           NA                  18     0.000150 OB Call    OB Call  
# ... with 197,826 more rows, and 1 more variable: laststagestatus2 <fct>

直到这里都可以正常工作 现在,我正在使用mer_rec <- recipe(laststagestatus2 ~ ., data = mer_train)%>% step_medianimpute(numberoflead,leadduration)%>% step_knnimpute(Gender__c,Age_Range__c,fisrsttouch,lasttouch) %>% step_other(Id,firsttouch) %>% step_other(Id,lasttouch) %>% step_dummy(all_nominal(), -laststagestatus2) %>% step_smote(laststagestatus2) mer_rec %>% prep() %>% juice() glm_spec <- logistic_reg() %>% set_engine("glm") rf_spec <- rand_forest(trees = 1000) %>% set_mode("classification") %>% set_engine("ranger") mer_wf <- workflow() %>% add_recipe(mer_rec) mer_metrics <- metric_set(roc_auc, accuracy, sensitivity, specificity) 函数来拟合每个重采样的逻辑回归。

这是我的代码,如下所示:

fit_resamples

我收到警告说:

doParallel::registerDoParallel()
    glm_rs <- mer_wf %>%
      add_model(glm_spec) %>%
      fit_resamples(
        resamples = mer_folds,
        metrics = mer_metrics,
        control = control_resamples(save_pred = TRUE)
glm_rs

有人对此有任何建议吗?非常感谢您的帮助!

0 个答案:

没有答案