当我使用Python在TensorFlow中使用神经网络进行预测时,出现以下错误:ValueError: Input 0 of layer dense is incompatible with the layer: expected axis -1 of input shape to have value 784 but received input with shape [None, 28]
。
我正在尝试遵循Tensorflow网站上的教程来训练神经网络对服装进行分类。我编写了以下代码:
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
from skimage import color, io
print(tf.__version__)
data = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = data.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images / 255
test_images = test_images / 255
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
model.fit(train_images, train_labels, epochs=20)
print(type(test_images))
images = [test_images[0]]
predictions = model.predict(images)
print(class_names[np.argmax(predictions[0])])
任何帮助,TIA都很感谢。
答案 0 :(得分:1)
为了社区的利益,来自评论部分。
通过将 model.predict(images)
更改为以下几行已解决了问题。
model.predict(np.expand_dims(test_images[0],0))