我有一个由三列组成的数据框:x,ID和date_time。 “ x”列是变量x的记录,ID指示要记录的内容,而date_time指示何时。请参见下面的数据框。
从这个数据框中,我想计算一个新的数据框,该数据框包含七个列:“测量”,“ ID”和“日期”,“ x_4_10_day”,“ Day_total”,“ x_4_10_night”,“ Night_total”。
每个唯一的测量都应该有一行。到目前为止,我有一个代码可以正确返回以下列:“测量”,“ ID”和“日期”:
df1$mydate = as.Date(df1$date_time, format = "%Y.%m.%d %H:%M:%S")
df1$tm <- as.numeric(df1$date_time)
df1$dts <- 86400*as.numeric(df1$mydate)
df2 <- df1 %>%
group_by(ID,mydate) %>%
transform(date = case_when(((dts-3600)<tm & tm<(dts+82800)) ~paste0(mydate), ((dts+82800)<=tm) ~paste0(mydate+1) )) %>%
select(ID,date) %>%
unique() %>%
group_by(ID) %>%
mutate(measurement = row_number())
但是我不知道怎么做最后一个。
这是预期的输出:
dummy_output <- read.table(header=TRUE, text ="
ID Date Measurement x_4_10_day Day_total x_4_10_night Night_total
12 2020.03.02 1 30 40 0 0
12 2020.03.03 2 0 0 45 75
13 2020.05.09 1 90 90 0 0
")
任何建议都非常感谢,谢谢!
这是数据:
structure(list(date_time = c("2020.03.02 22:00:17", "2020.03.02 22:05:17",
"2020.03.02 22:10:17", "2020.03.02 22:35:17", "2020.03.02 22:40:17",
"2020.03.02 22:45:17", "2020.03.02 22:50:17", "2020.03.02 22:55:17",
"2020.03.02 23:00:17", "2020.03.02 23:05:17", "2020.03.02 23:10:17",
"2020.03.02 23:15:17", "2020.03.02 23:20:17", "2020.03.02 23:25:17",
"2020.03.02 23:30:17", "2020.03.02 23:35:17", "2020.03.02 23:40:17",
"2020.03.02 23:45:17", "2020.03.02 23:50:17", "2020.03.02 23:55:17",
"2020.03.03 00:00:17", "2020.03.03 00:55:17", "2020.03.03 01:00:17",
"2020.03.03 01:05:17", "2020.03.03 01:10:17", "2020.03.03 01:15:17",
"2020.03.03 01:20:17", "2020.03.03 01:25:17", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32"), id = c(12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L), x = c("7.55", "4.55", "4.55", "12",
"12", "10", "10", "4.3", "", "", "4.3", "4.3", "4.3", "", "4.3",
"12", "12", "12", "2", "12", "12", "", "8", "3", "3", "2", "2",
"", "12", "10", "10", "4.3", "4.3", "4.3", "4.3", "4.3", "4.3",
"4.3", "4.3", "12", "12", "12", "12", "12", "12", "12")), row.names = c(NA,
46L), class = "data.frame")
答案 0 :(得分:1)
我已将id=14
仅包含夜间值添加到您的数据框中。也许这就是您想要的。请注意,您的期望值不完全符合您的要求。
df11 <- structure(list(date_time = c("2020.03.02 22:00:17", "2020.03.02 22:05:17",
"2020.03.02 22:10:17", "2020.03.02 22:35:17", "2020.03.02 22:40:17",
"2020.03.02 22:45:17", "2020.03.02 22:50:17", "2020.03.02 22:55:17",
"2020.03.02 23:00:17", "2020.03.02 23:05:17", "2020.03.02 23:10:17",
"2020.03.02 23:15:17", "2020.03.02 23:20:17", "2020.03.02 23:25:17",
"2020.03.02 23:30:17", "2020.03.02 23:35:17", "2020.03.02 23:40:17",
"2020.03.02 23:45:17", "2020.03.02 23:50:17", "2020.03.02 23:55:17",
"2020.03.03 00:00:17", "2020.03.03 00:55:17", "2020.03.03 01:00:17",
"2020.03.03 01:05:17", "2020.03.03 01:10:17", "2020.03.03 01:15:17",
"2020.03.03 01:20:17", "2020.03.03 01:25:17", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.05.09 08:39:32", "2020.05.09 08:39:32",
"2020.03.02 23:45:17", "2020.03.02 23:50:17", "2020.03.02 23:55:17",
"2020.03.03 00:00:17", "2020.03.03 00:55:17", "2020.03.03 01:00:17"
),
x = c("7.55", "4.55", "4.55", "12",
"12", "10", "10", "4.3", "", "", "4.3", "4.3", "4.3", "", "4.3",
"12", "12", "12", "2", "12", "12", "", "8", "3", "3", "2", "2",
"", "12", "10", "10", "4.3", "4.3", "4.3", "4.3", "4.3", "4.3",
"4.3", "4.3", "12", "12", "12", "12", "12", "12", "12",
"12", "10", "10", "4.3", "4.3", "4.3"),
id = c(12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L)),
row.names = c(NA, 52L), class = "data.frame")
df11$xn <- as.numeric(df11$x)
df1 <- df11 %>% transform(xmin = ifelse((xn<4 | xn>10 | is.na(xn)),0,5 ),
xmint = ifelse(is.na(xn),-5,5 ))
df1$dateTime = as_datetime(df1$date_time, format = "%Y.%m.%d %H:%M:%S")
df1$mydate = as.Date(df1$date_time, format = "%Y.%m.%d %H:%M:%S")
df1$tm <- as.numeric(df1$dateTime)
df1$dts <- 86400*as.numeric(df1$mydate)
df2 <- df1 %>% group_by(id,mydate) %>%
transform(date = case_when(((dts-3600)<tm & tm<(dts+82800) )~paste0(mydate),((dts+82800)<=tm)~paste0(mydate+1) )) %>%
transform(dayrnight = ifelse((tm>=(dts+25200) & tm<(dts+82800) ),'day','night' ) ) %>%
group_by(id,date,dayrnight) %>%
dplyr::summarise(x_4_10 = sum(xmin), total = sum(xmint)) %>%
pivot_wider(id_cols = c(id,date), names_from = dayrnight, values_from = c("x_4_10", "total")) %>%
mutate_if(is.numeric , replace_na, replace = 0) %>%
group_by(id) %>% mutate(measurement = row_number()) %>%
select(id,date,measurement,x_4_10_day,total_day,x_4_10_night,total_night)
> df2
# A tibble: 4 x 7
# Groups: id [3]
id date measurement x_4_10_day total_day x_4_10_night total_night
<int> <chr> <int> <dbl> <dbl> <dbl> <dbl>
1 12 2020-03-02 1 30 40 0 0
2 12 2020-03-03 2 0 0 25 50
3 13 2020-05-09 1 50 90 0 0
4 14 2020-03-03 1 0 0 25 30
答案 1 :(得分:1)
我花了一些时间,但也许你想要这个
样本数据(与13
中的日期/时间稍有不同
df <- structure(list(date_time = c("2020.03.02 22:00:17", "2020.03.02 22:05:17",
"2020.03.02 22:10:17", "2020.03.02 22:35:17", "2020.03.02 22:40:17",
"2020.03.02 22:45:17", "2020.03.02 22:50:17", "2020.03.02 22:55:17",
"2020.03.02 23:00:17", "2020.03.02 23:05:17", "2020.03.02 23:10:17",
"2020.03.02 23:15:17", "2020.03.02 23:20:17", "2020.03.02 23:25:17",
"2020.03.02 23:30:17", "2020.03.02 23:35:17", "2020.03.02 23:40:17",
"2020.03.02 23:45:17", "2020.03.02 23:50:17", "2020.03.02 23:55:17",
"2020.03.03 00:00:17", "2020.03.03 00:55:17", "2020.03.03 01:00:17",
"2020.03.03 01:05:17", "2020.03.03 01:10:17", "2020.03.03 01:15:17",
"2020.03.03 01:20:17", "2020.03.03 01:25:17", "2020.05.09 08:39:32",
"2020.05.09 08:44:32", "2020.05.09 08:49:32", "2020.05.09 08:54:32",
"2020.05.09 08:59:32", "2020.05.09 09:39:32", "2020.05.09 09:44:32",
"2020.05.09 09:49:32", "2020.05.09 09:59:32", "2020.05.09 10:39:32",
"2020.05.09 11:39:32", "2020.05.09 12:39:32", "2020.05.09 13:39:32",
"2020.05.09 14:39:32", "2020.05.09 15:39:32", "2020.05.09 16:39:32",
"2020.05.09 17:39:32", "2020.05.09 18:39:32"), id = c(12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L), x = c("7.55", "4.55", "4.55", "12",
"12", "10", "10", "4.3", "", "", "4.3", "4.3", "4.3", "", "4.3",
"12", "12", "12", "2", "12", "12", "", "8", "3", "3", "2", "2",
"", "12", "10", "10", "4.3", "4.3", "4.3", "4.3", "4.3", "4.3",
"4.3", "4.3", "12", "12", "12", "12", "12", "12", "12")), row.names = c(NA,
46L), class = "data.frame")
编辑结果
library(tidyverse)
library(lubridate)
df %>% as_tibble() %>%
transform(x = as.numeric(x),
date_time = as_datetime(date_time),
id = as.character(id)) %>%
mutate(d_n = ifelse(hour(date_time)>=7 & hour(date_time)<23, 'day', 'night'),
Date = as.Date(date_time, format = "%Y.%m.%d %H:%M:%S"),
valid_m = ifelse(x>=4 & x<= 10, 1, 0)) %>%
mutate(valid_m = ifelse(is.na(valid_m), 0, valid_m)) %>% #valid measurements
arrange(id, date_time) %>%
group_by(id) %>%
mutate(validm_d = as.numeric(lead(date_time)-date_time)) %>%
filter(!is.na(validm_d)) %>%
group_by(id, Date, d_n, valid_m) %>%
summarise(x_tm = sum(validm_d)) %>%
ungroup() %>%
pivot_wider(names_from = d_n, values_from = x_tm, values_fill =0) %>%
group_by(id, Date) %>%
mutate(day_t = sum(day), night_t = sum(night)) %>%
filter(valid_m != 0) %>%
group_by(id) %>%
mutate(measurement = row_number()) %>%
select(id, measurement, Date, x_4_10_day =day, x_4_10_total =day_t,
x_4_10_night =night, x_4_10_totaln = night_t)
desired_result
id measurement Date x_4_10_day x_4_10_total x_4_10_night x_4_10_totaln
<chr> <int> <date> <dbl> <dbl> <dbl> <dbl>
1 12 1 2020-03-02 50 60 20 60
2 12 2 2020-03-03 0 0 5 85
3 13 1 2020-05-09 235 600 0 0
在此解决方案中,我不确定每次测量的持续时间,因此删除了每个测量的最后一个值。您可以适当地更改代码。基本上,“日”的最后一次测量结束了2300小时,因此第一行的结果应该比所示的结果少17秒。