以这样一个示例数据框为例(实际数据框具有更多列)
df <- data.frame(A = seq(1, 3, 1),
B = seq(4, 6, 1))
我可以像这样使用pivot_longer
来收集我感兴趣的列(A
和B
)
library(dplyr)
library(tidyr)
df <- df %>%
pivot_longer(cols = c("A", "B"), names_to = "Letter", values_to = "Number")
df
Letter Number
<chr> <dbl>
1 A 1
2 B 4
3 A 2
4 B 5
5 A 3
6 B 6
现在让我们说我的数据框中还有另一列C
,使其不再整齐
C <- seq(7, 12, 1)
df_2 <- data.frame(df, C)
df_2
Letter Number C
1 A 1 7
2 B 4 8
3 A 2 9
4 B 5 10
5 A 3 11
6 B 6 12
我想再次使用pivot_longer
使df_2
整洁并获得以下输出:
data.frame(Letter = c(rep("A", 3), rep("B", 3), rep("C", 3)),
Number = seq(1, 12, 1))
Letter Number
1 A 1
2 A 2
3 A 3
4 B 4
5 B 5
6 B 6
7 C 7
8 C 8
9 C 9
10 C 10
11 C 11
12 C 12
使用相同的策略会产生错误:
df_2 %>%
pivot_longer(cols = "C", names_to = "Letter", values_to = "Number")
Error: Failed to create output due to bad names. * Choose another strategy with `names_repair`
将names_repair
设置为minimal
会运行,但不会产生我想要的输出。
答案 0 :(得分:1)
如果有帮助,请尝试以下方法:
library(tidyverse)
#Code
df_2 %>% pivot_longer(everything()) %>%
arrange(name) %>% group_by(name) %>%
filter(!duplicated(value))
输出:
# A tibble: 12 x 2
# Groups: name [3]
name value
<chr> <dbl>
1 A 1
2 A 2
3 A 3
4 B 4
5 B 5
6 B 6
7 C 7
8 C 8
9 C 9
10 C 10
11 C 11
12 C 12
答案 1 :(得分:1)
像这样
@kafka-1-vm:/sys/fs/cgroup/memory/foo$ cat memory.usage_in_bytes
4096
输出
library(tidyverse)
df <- data.frame(A = seq(1, 3, 1),
B = seq(4, 6, 1))
df <- df %>%
pivot_longer(cols = c("A", "B"), names_to = "Letter", values_to = "Number")
C <- seq(7, 12, 1)
df_2 <- data.frame(C)
df_2 <- df_2 %>% pivot_longer(cols = C, names_to = "Letter", values_to = "Number")
df_result <- rbind(df, df_2)
答案 2 :(得分:0)
我们可以轻松地stack
library(dplyr)
stack(df_2)[2:1] %>%
distinct %>%
set_names(c("Letter", "Number"))
-输出
# Letter Number
#1 A 1
#2 A 2
#3 A 3
#4 B 4
#5 B 5
#6 B 6
#7 C 7
#8 C 8
#9 C 9
#10 C 10
#11 C 11
#12 C 12
或带有unnest/enframe
library(tidyr)
library(tibble)
unclass(df_2) %>%
enframe(name = "Letter", value = "Number") %>%
unnest(c(Number)) %>%
distinct
或使用melt
library(reshape2)
melt(df_2) %>%
distinct()
或在base R
unique(stack(df_2)[2:1])