我正在使用React material-ui。
我试图仅在def myModel():
no_Of_Filters=60
size_of_Filter=(5,5) # THIS IS THE KERNEL THAT MOVE AROUND THE IMAGE TO GET THE FEATURES.
# THIS WOULD REMOVE 2 PIXELS FROM EACH BORDER WHEN USING 32 32 IMAGE
size_of_Filter2=(3,3)
size_of_pool=(2,2) # SCALE DOWN ALL FEATURE MAP TO GERNALIZE MORE, TO REDUCE OVERFITTING
no_Of_Nodes = 500 # NO. OF NODES IN HIDDEN LAYERS
model= Sequential()
model.add((Conv2D(no_Of_Filters,size_of_Filter,input_shape=(imageDimesions[0],imageDimesions[1],1),activation='relu'))) # ADDING MORE CONVOLUTION LAYERS = LESS FEATURES BUT CAN CAUSE ACCURACY TO INCREASE
model.add((Conv2D(no_Of_Filters, size_of_Filter, activation='relu')))
model.add(MaxPooling2D(pool_size=size_of_pool)) # DOES NOT EFFECT THE DEPTH/NO OF FILTERS
model.add((Conv2D(no_Of_Filters//2, size_of_Filter2,activation='relu')))
model.add((Conv2D(no_Of_Filters // 2, size_of_Filter2, activation='relu')))
model.add(MaxPooling2D(pool_size=size_of_pool))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(no_Of_Nodes,activation='relu'))
model.add(Dropout(0.5)) # INPUTS NODES TO DROP WITH EACH UPDATE 1 ALL 0 NONE
model.add(Dense(noOfClasses,activation='softmax')) # OUTPUT LAYER
# COMPILE MODEL
model.compile(Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
return model
############################### TRAIN
model = myModel()
print(model.summary())
history=model.fit_generator(dataGen.flow(X_train,y_train,batch_size=batch_size_val),steps_per_epoch=steps_per_epoch_val,epochs=epochs_val,validation_data=(X_validation,y_validation),shuffle=1)
打开时调用函数:
Accordion
答案 0 :(得分:1)
Accordian
onChange
中有道具,如果手风琴是开火的,您可以通过它并对其进行跟踪,即
<Accordion onChange = {(e,expanded) => {
if(expanded){
calledFunction()
}
}}>
在您的情况下,将是这样的:
<Accordion onChange = {(e,expanded) => {
if(expanded){
this.myFn(row.id)
}
}} >
这里是演示:https://codesandbox.io/s/spring-leftpad-uu9yc?file=/demo.js