我想通过df
到0
的时间范围内为所有列创建每月数据并用2019-01-01
填充缺失值来对2019-12-31
进行重新采样。
df
:
ITEM_ID Date Value YearMonth
0 101002 2019-03-31 1.0 2019-03
1 101002 2019-04-30 1.0 2019-04
2 101002 2019-10-31 0.0 2019-10
3 101002 2019-11-30 8.0 2019-11
4 101002 2019-12-31 5.0 2019-12
预期输出:
ITEM_ID Date Value YearMonth
... 0 2019-01 (added)
... 0 2019-02 (added)
0 101002 2019-03-31 1.0 2019-03
1 101002 2019-04-30 1.0 2019-04
... 0 2019-05 (added)
... 0 2019-06 (added)
... 0 2019-07 (added)
... 0 2019-08 (added)
... 0 2019-09 (added)
2 101002 2019-10-31 0.0 2019-10
3 101002 2019-11-30 8.0 2019-11
4 101002 2019-12-31 5.0 2019-12
我遇到了几种方法,例如multiindex
和resample
。 multiindex
似乎用途广泛,但是在涉及不同级别的索引时会变得有些复杂。我不确定resample
是否允许我将效果扩展到指定的时间范围。最好的方法是什么?
答案 0 :(得分:1)
这是解决方案
import pandas as pd
df1= # this is the dataframe which you have given example. please change accordingly.
print(df1)
data=[['2019-01'],['2019-02'],['2019-03'],['2019-04'],['2019-05'],['2019-06'],['2019-07'],['2019-08'],
['2019-09'],['2019-10'],['2019-11'],['2019-12']]
df2=pd.DataFrame(data=data,columns=['YearMonth'])
print(df2)
final_DF = pd.merge(df1,df2,on ='YearMonth',how ='outer').sort_values('YearMonth')
final_DF = final_DF.fillna(0)
print(final_DF)
答案 1 :(得分:1)
我们没有考虑年和月列,而是创建了一个带有开始和结束日期和时间的空数据框,并将其与原始数据框组合在一起。
df['Date'] = pd.to_datetime(df['Date'])
df1 = pd.DataFrame(index=pd.to_datetime(pd.date_range('2019-01-01', '2020-01-01', freq='1M'))).reset_index()
df1 = df1.merge(df, left_on='index', right_on='Date', how='outer')
df1['yearmonth'] = df1['index'].apply(lambda x: str(x.year) + '-' + '{:02}'.format(x.month))
df1
index ITEM_ID Date Value YearMonth yearmonth
0 2019-01-31 NaN NaT NaN NaN 2019-01
1 2019-02-28 NaN NaT NaN NaN 2019-02
2 2019-03-31 101002.0 2019-03-31 1.0 2019-03 2019-03
3 2019-04-30 101002.0 2019-04-30 1.0 2019-04 2019-04
4 2019-05-31 NaN NaT NaN NaN 2019-05
5 2019-06-30 NaN NaT NaN NaN 2019-06
6 2019-07-31 NaN NaT NaN NaN 2019-07
7 2019-08-31 NaN NaT NaN NaN 2019-08
8 2019-09-30 NaN NaT NaN NaN 2019-09
9 2019-10-31 101002.0 2019-10-31 0.0 2019-10 2019-10
10 2019-11-30 101002.0 2019-11-30 8.0 2019-11 2019-11
11 2019-12-31 101002.0 2019-12-31 5.0 2019-12 2019-12
答案 2 :(得分:1)
我认为您需要DataFrame.reindex
:
df['YearMonth'] = pd.to_datetime(df['YearMonth'])
r = pd.to_datetime(pd.date_range('2019-01-01', '2020-01-01', freq='1MS'))
mux = pd.MultiIndex.from_product([df['ITEM_ID'].unique(), r], names=['ITEM_ID','YearMonth'])
df = df.set_index(['ITEM_ID','YearMonth']).reindex(mux).fillna({'Value':0}).reset_index().reindex(df.columns, axis=1)
print (df)
ITEM_ID Date Value YearMonth
0 101002 NaN 0.0 2019-01-01
1 101002 NaN 0.0 2019-02-01
2 101002 2019-03-31 1.0 2019-03-01
3 101002 2019-04-30 1.0 2019-04-01
4 101002 NaN 0.0 2019-05-01
5 101002 NaN 0.0 2019-06-01
6 101002 NaN 0.0 2019-07-01
7 101002 NaN 0.0 2019-08-01
8 101002 NaN 0.0 2019-09-01
9 101002 2019-10-31 0.0 2019-10-01
10 101002 2019-11-30 8.0 2019-11-01
11 101002 2019-12-31 5.0 2019-12-01
12 101002 NaN 0.0 2020-01-01