我正在尝试在github(https://github.com/AayushKrChaudhary/RITnet)上运行代码
我没有获得OpenEDS的语义分割数据集,所以我尝试从Internet下载png图像并将其放在Semantic_Segmentation_Dataset\test\
中以运行测试程序。
该代码给出以下错误:
Traceback (most recent call last):
File "test.py", line 59, in <module>
for i, batchdata in tqdm(enumerate(testloader),total=len(testloader)):
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\site-packages\torch\utils\data\dataloader.py", line 291, in __iter__
return _MultiProcessingDataLoaderIter(self)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\site-packages\torch\utils\data\dataloader.py", line 737, in __init__
w.start()
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle cv2.CLAHE objects
(Machine_Learning) C:\Users\b0743\Downloads\RITnet-master\RITnet-master>Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
File "C:\Users\b0743\AppData\Local\Continuum\anaconda3\envs\Machine_Learning\lib\multiprocessing\spawn.py", line 115, in _main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
我的环境是:
# Name Version
cudatoolkit 10.1.243
cudnn 7.6.5
keras-applications 1.0.8
keras-base 2.3.1
keras-gpu 2.3.1
keras-preprocessing 1.1.0
matplotlib 3.3.1
matplotlib-base 3.3.1
numpy 1.19.1
numpy-base 1.19.1
opencv 3.3.1
pillow 7.2.0
python 3.6.10
pytorch 1.6.0
scikit-learn 0.23.2
scipy 1.5.2
torchsummary 1.5.1
torchvision 0.7.0
tqdm 4.48.2
我不知道这是否是一个愚蠢的问题,但我希望有人可以尝试为我回答。
答案 0 :(得分:0)
我实际上只是进入数据集python文件并注释了所有需要opencv的部分。 事实证明它是可行的,但是您不会得到那个甜美的clahe和其他东西,但是它可行。 如果不需要数据集,只需在640 x 400图像中制作一个张量,然后将其放入一个空数组中,然后将该数组放入一个数组中,直到具有4d张量并将其传递到dnn中,然后放入通过获取预测功能和中提琴的输出,您可以获得一系列的眼睛特征。