我想将回归线添加到我的相关散点图中。不幸的是,这实际上不适用于plot_ly()
。我已经在该论坛的其他帖子中尝试过一些解决方案,但这是行不通的。
我的数据框如下所示(只是其中的一部分):
我的绘图代码和实际绘图输出如下:
CorrelationPlot <- plot_ly(data = df.dataCorrelation, x = ~df.dataCorrelation$prod1,
y = ~df.dataCorrelation$prod2, type = 'scatter', mode = 'markers',
marker = list(size = 7, color = "#FF9999", line = list(color = "#CC0000", width = 2))) %>%
layout(title = "<b> Correlation Scatter Plot", xaxis = list(title = product1),
yaxis = list(title = product2), showlegend = FALSE)
我想要的是这样的东西:
我用ggscatter()
函数产生的:
library(ggpubr)
ggscatter(df.dataCorrelation, x = "prod1", y = "prod2", color = "#CC0000", shape = 21, size = 2,
add = "reg.line", add.params = list(color = "#CC0000", size = 2), conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson", xlab = product1, ylab = product2)
我如何用plot_ly()
得到回归线?
代码编辑:
CorrelationPlot <- plot_ly(data = df.dataCorrelation, x = ~df.dataCorrelation$prod1,
y = ~df.dataCorrelation$prod2, type = 'scatter', mode = 'markers',
marker = list(size = 7, color = "#FF9999",
line = list(color = "#CC0000", width = 2))) %>%
add_trace(x = ~df.dataCorrelation$fitted_values, mode = "lines", type = 'scatter',
line = list(color = "black")) %>%
layout(title = "<b> Correlation Scatter Plot", xaxis = list(title = product1),
yaxis = list(title = product2), showlegend = FALSE)
赠予:
如何在此处找到回归线??
答案 0 :(得分:1)
我认为没有像ggscatter这样的现成函数,很可能您必须手动完成,例如首先拟合线性模型并将值添加到data.frame。
我制作了一个类似于您的数据的data.frame:
set.seed(111)
df.dataCorrelation = data.frame(prod1=runif(50,20,60))
df.dataCorrelation$prod2 = df.dataCorrelation$prod1 + rnorm(50,10,5)
fit = lm(prod2 ~ prod1,data=df.dataCorrelation)
fitdata = data.frame(prod1=20:60)
prediction = predict(fit,fitdata,se.fit=TRUE)
fitdata$fitted = prediction$fit
该行的上下边界仅为1.96 *预测标准误:
fitdata$ymin = fitdata$fitted - 1.96*prediction$se.fit
fitdata$ymax = fitdata$fitted + 1.96*prediction$se.fit
我们计算相关性:
COR = cor.test(df.dataCorrelation$prod1,df.dataCorrelation$prod2)[c("estimate","p.value")]
COR_text = paste(c("R=","p="),signif(as.numeric(COR,3),3),collapse=" ")
并将其放入图中:
library(plotly)
df.dataCorrelation %>%
plot_ly(x = ~prod1) %>%
add_markers(x=~prod1, y = ~prod2) %>%
add_trace(data=fitdata,x= ~prod1, y = ~fitted,
mode = "lines",type="scatter",line=list(color="#8d93ab")) %>%
add_ribbons(data=fitdata, ymin = ~ ymin, ymax = ~ ymax,
line=list(color="#F1F3F8E6"),fillcolor ="#F1F3F880" ) %>%
layout(
showlegend = F,
annotations = list(x = 50, y = 50,
text = COR_text,showarrow =FALSE)
)
答案 1 :(得分:0)
另一个选择是使用ggplotly
作为
library(plotly)
ggplotly(
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length))+
geom_point(color = "#CC0000", shape = 21, size = 2) +
geom_smooth(method = 'lm') +
annotate("text", label=paste0("R = ", round(with(iris, cor.test(Sepal.Length, Petal.Length))$estimate, 2),
", p = ", with(iris, cor.test(Sepal.Length, Petal.Length))$p.value),
x = min(iris$Sepal.Length) + 1, y = max(iris$Petal.Length) + 1, color="steelblue", size=5)+
theme_classic()
)