我的网络按1来处理每个张量,因此它将生成一个输入和输出对,将输入馈入网络,获得该单个张量对的输出,并将其与输出进行比较。
张量对的一个例子是张量作为输入:[10,1]和输出[12,1]等。这无需填充。这是生成张量对的一般过程:
Input Tensor: torch.Size([6, 1])
Target Tensor: torch.Size([7, 1])
Input Tensor: torch.Size([8, 1])
Target Tensor: torch.Size([10, 1])
Input Tensor: torch.Size([8, 1])
Target Tensor: torch.Size([10, 1])
更深入地了解所生成的张量:
Input Tensor:
tensor([[22],
[ 7],
[18],
[ 5],
[ 1]])
Target Tensor:
tensor([[23],
[ 8],
[ 6],
[19],
[ 6],
[ 5],
[ 1]])
我现在想做的是在此过程中实现批处理。因此,我不想生成单个对,而是对该对进行前馈,而是想生成一个大对(32、64 ...)的对,并将其馈入。
我将如何创建输入批次和输出批次? 我相信它应该类似于[40,32]或[40,64] >
这是我目前的程序。
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.001, batch_size=64):
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.CrossEntropyLoss()#nn.NLLLoss()
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
print("Input Tensor: ", input_tensor.shape)
print("Target Tensor: ",target_tensor.shape)
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
#print(decoder_output, target_tensor[di])
loss += criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di] # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item()