我正在尝试为时间序列预测建立一个简单的逻辑回归模型。但是,当我尝试训练模型时,出现以下错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [Condition x == y did not hold element-wise:] [x (loss/output_1_loss/SparseSoftmaxCrossEntropyWithLogits/Shape_1:0) = ] [64 1] [y (loss/output_1_loss/SparseSoftmaxCrossEntropyWithLogits/strided_slice:0) = ] [64 45]
[[node loss/output_1_loss/SparseSoftmaxCrossEntropyWithLogits/assert_equal_1/Assert/Assert (defined at C:/Users/jani/PycharmProjects/RNN_trade/base.py:156) ]] [Op:__inference_distributed_function_2798]
Function call stack:
distributed_function
批处理大小为64,我正尝试将45个时间步序列传递给模型。该模型由一层组成。在代码中:
model2 = Sequential()
model2.add(Dense(2, activation="softmax"))
opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)
model2.compile(loss="sparse_categorical_crossentropy",
optimizer=opt,
metrics=["accuracy"])
我尝试更改模型的所有参数(优化器,损失等),但似乎无济于事。我该如何解决这个问题?