我有一个df
格式:
df <- tibble(
id = c(1,2,3),
val02 = c(0,1,0),
val03 = c(1,0,0),
val04 = c(0,1,1),
age02 = c(1,2,3),
age03 = c(2,3,4),
age04 = c(3,4,5)
)
我想将其整理成整齐的格式,例如:
# A tibble: 9 x 4
id year val age
<dbl> <chr> <dbl> <dbl>
1 1 02 0 1
2 1 03 1 2
3 1 04 0 3
4 2 02 1 2
5 2 03 0 3
6 2 04 1 4
7 3 02 0 3
8 3 03 0 4
9 3 04 1 5
最后使用两个单独的pivot_longer
操作和一个left_join
,我实现了我想要的:
library(tidyverse)
df1 <- df %>%
pivot_longer(cols = starts_with("val"), names_to = "year", values_to = "val", names_prefix = "val")
df2 <- df %>%
pivot_longer(cols = starts_with("age"), names_to = "year", values_to = "age", names_prefix = "age")
left_join(df1, df2) %>%
select(id, year, val, age)
但是,这似乎非常复杂。
如何简化此操作?有没有办法一次性执行此操作? (在一个管道中..?)
答案 0 :(得分:4)
这取决于您的字符串(列名)的复杂程度,但要给出一个主意:
library(tidyverse)
df %>%
pivot_longer(-id,
names_to = c('.value', 'year'),
names_pattern = '([a-z]+)(\\d+)'
)
输出:
# A tibble: 9 x 4
id year val age
<dbl> <chr> <dbl> <dbl>
1 1 02 0 1
2 1 03 1 2
3 1 04 0 3
4 2 02 1 2
5 2 03 0 3
6 2 04 1 4
7 3 02 0 3
8 3 03 0 4
9 3 04 1 5