我正在为每个用例使用一些自定义网络框构建一个小型网络,如下所示:
def top_block(dropout = None, training = None):
# scaled input
input_1 = tf.keras.Input(shape=(1,15), dtype='float32')
input_2 = tf.keras.Input(shape=(1,15), dtype='float32')
if dropout:
layer_one = tf.keras.layers.Dropout(rate = dropout)(input_1, training = training)
layer_two = tf.keras.layers.Dropout(rate = dropout)(input_2, training = training)
return [layer_one,layer_two]
return [input_1,input_2]
def bottom_layer(input_layers):
data = tf.reduce_mean(input_layers,0)
cls_layer = tf.keras.layers.Dense(1,
kernel_initializer = keras.initializers.glorot_uniform(seed=200),
activation = 'sigmoid')(data)
model = tf.keras.Model([input_layers[0], input_layers[1]], cls_layer , name = 'model_1')
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy'])
model.summary()
return model
如果我尝试不丢失就访问该网络,则工作正常:
top_ = top_block()
model = bottom_layer(top_ )
但是如果我通过辍学进行访问,则会出现错误:
top_ = top_block(dropout = 0.2, training = True)
model = bottom_layer(top_ )
ValueError:图表已断开连接:无法在“ input_72”层获得张量Tensor(“ input_72:0”,shape =(None,1,15),dtype = float32)的值。可以顺利访问以下先前的图层:[]
training = False
?我需要加载完整的模型权重还是旧模型权重?谢谢!
答案 0 :(得分:0)
我刚刚意识到我的输入来自中间层(辍学层),它应该直接来自输入层:
def top_block():
# scaled input
input_1 = tf.keras.Input(shape=(1,15), dtype='float32')
input_2 = tf.keras.Input(shape=(1,15), dtype='float32')
return [input_1, input_2]
def apply_dropout(layers_data, dropout_val, training):
layer_one = tf.keras.layers.Dropout(rate = dropout_val)(layers_data[0], training = training)
layer_two = tf.keras.layers.Dropout(rate = dropout_val)(layers_data[1], training = training)
return [layer_one, layer_two]
def bottom_layer(input_layers, data):
data = tf.reduce_mean(data, 0)
cls_layer = tf.keras.layers.Dense(1,
kernel_initializer = keras.initializers.glorot_uniform(seed=200),
activation = 'sigmoid')(data)
model = tf.keras.Model(input_layers, cls_layer , name = 'model_1')
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy'])
model.summary()
return model
现在正在工作
top_ = top_block()
dropout_ = apply_dropout(top_, 0.2, True)
model = bottom_layer(top_ , dropout_)