我是机器翻译和Trax的新手。我的目标是了解Trax中的变压器入门示例,可以在https://trax-ml.readthedocs.io/en/latest/notebooks/trax_intro.html中找到:
import trax
# Create a Transformer model.
# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax.models.Transformer(
input_vocab_size=33300,
d_model=512, d_ff=2048,
n_heads=8, n_encoder_layers=6, n_decoder_layers=6,
max_len=2048, mode='predict')
# Initialize using pre-trained weights.
model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz',
weights_only=True)
# Tokenize a sentence.
sentence = 'It is nice to learn new things today!'
tokenized = list(trax.data.tokenize(iter([sentence]), # Operates on streams.
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword'))[0]
# Decode from the Transformer.
tokenized = tokenized[None, :] # Add batch dimension.
tokenized_translation = trax.supervised.decoding.autoregressive_sample(
model, tokenized, temperature=0.0) # Higher temperature: more diverse results.
# De-tokenize,
tokenized_translation = tokenized_translation[0][:-1] # Remove batch and EOS.
translation = trax.data.detokenize(tokenized_translation,
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword')
print(translation)
该示例运行良好。但是,当我尝试使用已初始化模型(例如
)转换另一个示例时sentence = 'I would like to try another example.'
tokenized = list(trax.data.tokenize(iter([sentence]),
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword'))[0]
tokenized = tokenized[None, :]
tokenized_translation = trax.supervised.decoding.autoregressive_sample(
model, tokenized, temperature=0.0)
tokenized_translation = tokenized_translation[0][:-1]
translation = trax.data.detokenize(tokenized_translation,
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword')
print(translation)
我在本地计算机和Google Colab上都得到了输出!
。其他示例也是如此。
当我建立并初始化新模型时,一切正常。
这是一个错误吗?如果不是,那么有人会这么向我解释这里发生了什么以及如何避免/修复这种行为?
令牌化和去令牌化似乎运行良好,我对此进行了调试。 trax.supervised.decoding.autoregressive_sample
中似乎出现了错误/意外。
答案 0 :(得分:1)
我自己发现了这个问题……需要重置模型的state
。因此,以下代码对我有用:
def translate(model, sentence, vocab_dir, vocab_file):
empty_state = model.state # save empty state
tokenized_sentence = next(trax.data.tokenize(iter([sentence]), vocab_dir=vocab_dir,
vocab_file=vocab_file))
tokenized_translation = trax.supervised.decoding.autoregressive_sample(
model, tokenized_sentence[None, :], temperature=0.0)[0][:-1]
translation = trax.data.detokenize(tokenized_translation, vocab_dir=vocab_dir,
vocab_file=vocab_file)
model.state = empty_state # reset state
return translation
# Create a Transformer model.
# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax.models.Transformer(input_vocab_size=33300, d_model=512, d_ff=2048, n_heads=8,
n_encoder_layers=6, n_decoder_layers=6, max_len=2048,
mode='predict')
# Initialize using pre-trained weights.
model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz',
weights_only=True)
print(translate(model, 'It is nice to learn new things today!',
vocab_dir='gs://trax-ml/vocabs/', vocab_file='ende_32k.subword'))
print(translate(model, 'I would like to try another example.',
vocab_dir='gs://trax-ml/vocabs/', vocab_file='ende_32k.subword'))