例如,我正在寻找脚本/笔记本,用德语从头开始训练GPT2和Reformer模型。 类似于:
我正在尝试修改同一笔记本,但是GPT2似乎不接受LinebyLineDataset或padding。
我的错误是:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<timed eval> in <module>
~/anaconda3/envs/thesis_p1/lib/python3.6/site-packages/transformers/trainer.py in train(self, model_path)
490 self._past = None
491
--> 492 for step, inputs in enumerate(epoch_iterator):
493
494 # Skip past any already trained steps if resuming training
~/anaconda3/envs/thesis_p1/lib/python3.6/site-packages/tqdm/notebook.py in __iter__(self, *args, **kwargs)
226 def __iter__(self, *args, **kwargs):
227 try:
--> 228 for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):
229 # return super(tqdm...) will not catch exception
230 yield obj
~/anaconda3/envs/thesis_p1/lib/python3.6/site-packages/tqdm/std.py in __iter__(self)
1128
1129 try:
-> 1130 for obj in iterable:
1131 yield obj
1132 # Update and possibly print the progressbar.
~/.local/lib/python3.6/site-packages/torch/utils/data/dataloader.py in __next__(self)
344 def __next__(self):
345 index = self._next_index() # may raise StopIteration
--> 346 data = self.dataset_fetcher.fetch(index) # may raise StopIteration
347 if self.pin_memory:
348 data = _utils.pin_memory.pin_memory(data)
~/.local/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
45 else:
46 data = self.dataset[possibly_batched_index]
---> 47 return self.collate_fn(data)
~/anaconda3/envs/thesis_p1/lib/python3.6/site-packages/transformers/data/data_collator.py in __call__(self, examples)
79
80 def __call__(self, examples: List[torch.Tensor]) -> Dict[str, torch.Tensor]:
---> 81 batch = self._tensorize_batch(examples)
82 if self.mlm:
83 inputs, labels = self.mask_tokens(batch)
~/anaconda3/envs/thesis_p1/lib/python3.6/site-packages/transformers/data/data_collator.py in _tensorize_batch(self, examples)
96 if self.tokenizer._pad_token is None:
97 raise ValueError(
---> 98 "You are attempting to pad samples but the tokenizer you are using"
99 f" ({self.tokenizer.__class__.__name__}) does not have one."
100 )
ValueError: You are attempting to pad samples but the tokenizer you are using (GPT2Tokenizer) does not have one.
这是我当前的实现方式:
数据集看起来像这样(百万行):
1 "09.05.2019, Flyer: Zeit für Perspektiven - Unterstützung im Haushalt durch professionelle Dienstleistungen"
2 %0A%0ADie Burg Werle (ca. 10 km von hier entfernt) war ein schwer einnehmbarer Schlupfwinkel.
3 %0A%0AHier, abseits der verkehrsreichen Straßen, liegt das idyllische Quellental, ein Naturdenkmal der besonderen Art.
4 ½ bis 1 Tasse (75–150 ml) HEITMANN Reine Citronensäure in ½ Liter Wasser geben und in den Wassertank der Maschine füllen.
5 %0% der anfallenden Kosten ergeben sich aus der Straßenbeleuchtung.
6 ¾ Parken während der Ladezeit in Fußgängerzonen, in denen das Be- oder Entladen für bestimmte Zeiten freigegeben ist.
首先,我训练Sentence Piece Tokenizer:
from pathlib import Path
import sentencepiece as spm
paths = [str(x) for x in Path(".").glob("**/*.txt")]
arg='--input=deu-de_web-public_2019_1M-sentences.txt --model_prefix=m_test --vocab_size=52000'
spm.SentencePieceTrainer.train(arg)
然后我按如下方式加载我的GPT2令牌生成器:
from transformers import GPT2TokenizerFast
tokenizer = GPT2Tokenizer.from_pretrained("./German",additional_special_tokens=["<s>","<pad>","</s>","<unk>","<mask>"], max_len=512)
这是我的GPT2配置和语言模型:
from transformers import GPT2LMHeadModel, GPT2Config
# Initializing a GPT2 configuration
configuration = GPT2Config(vocab_size=52_000)
model = GPT2LMHeadModel(config=configuration)
数据集准备的逻辑:
from transformers import LineByLineTextDataset
dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path="./deu-de_web-public_2019_1M-sentences.txt",
block_size=128,
)
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False,
)
训练逻辑:
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./output",
overwrite_output_dir=True,
num_train_epochs=1,
per_gpu_train_batch_size=64,
save_steps=10_000,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
prediction_loss_only=True,
)
trainer.train()