与此主题相关的类似问题全部使用了已退休的Tidyverse函数的spread()和collect()。假设我有这样的小标题:
people 1 2 3. 4 5
person1 27000 30000 40000 50000 60000
person2 27000 30000 40000 50000 60000
person3 27000 30000 40000 50000 60000
person4 27000 30000 40000 50000 60000
我想这样转置
People Person1 Person2 Person3 Person4 Person5
1. 270000 270000 270000. 270000. 270000
2. 30000. 30000. 30000 30000. 30000
3
4
5. 60000. 60000. 60000 60000 60000
(不是为了节省时间而填写第三和第四列,但应该将其填充。
答案 0 :(得分:3)
使用data.table::transpose
library(data.table)
data.table::transpose(setDT(df1), make.names = 'people')[, People := .I][]
或使用tidyverse
,可以分两步完成转置:1),使用pivot_longer
重塑为长格式,2)使用pivot_wider
重塑为另一列宽
library(dplyr)
library(tidyr)
df1 %>%
pivot_longer(cols = -people, names_to = 'People') %>%
pivot_wider(names_from = people, values_from = value)
# A tibble: 5 x 5
# People person1 person2 person3 person4
# <chr> <int> <int> <int> <int>
#1 1 27000 27000 27000 27000
#2 2 30000 30000 30000 30000
#3 3 40000 40000 40000 40000
#4 4 50000 50000 50000 50000
#5 5 60000 60000 60000 60000
df1 <- structure(list(people = c("person1", "person2", "person3", "person4"
), `1` = c(27000L, 27000L, 27000L, 27000L), `2` = c(30000L, 30000L,
30000L, 30000L), `3` = c(40000L, 40000L, 40000L, 40000L), `4` = c(50000L,
50000L, 50000L, 50000L), `5` = c(60000L, 60000L, 60000L, 60000L
)), class = "data.frame", row.names = c(NA, -4L))