当我在以下代码中注释knn.fit(x_tr,y_tr)
并运行时,它给出了错误NotFittedError: This KNeighborsClassifier instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.
knn = KNeighborsClassifier(n_neighbors=1)
print(knn)
# knn.fit(x_tr, y_tr)
# print(knn)
pred = knn.predict(x_cv)
acc = accuracy_score(y_cv, pred, normalize=True) * float(100)
我的断开连接是我没有将knn.fit(...)
保存在任何变量中,程序如何知道我还没有安装?
另外,当我在初始化后和拟合后打印模型时……完全一样
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=1, p=2,
weights='uniform')
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=1, p=2,
weights='uniform')
答案 0 :(得分:1)
如果您查看KNeighborsClassifier
代码,则knn
实例会将经过训练的参数/信息存储在self
中。这就是程序知道的原因。
有关更多详细信息,当触发knn.predict
时。
neigh_dist, neigh_ind = self.kneighbors(X)
sklearn\neighbors\_classification.py
(第175行) check_is_fitted(self)
中调用sklearn\neighbors\_base.py
(第585行)