我有一个带子文件夹(类)的文件夹,每个子文件夹中都有图像。
<!doctype html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.1/css/bootstrap.min.css" integrity="sha384-VCmXjywReHh4PwowAiWNagnWcLhlEJLA5buUprzK8rxFgeH0kww/aWY76TfkUoSX" crossorigin="anonymous">
<title>Hello, world!</title>
</head>
<body>
<h1>The Properties are:-</h1>
{% for test_model in all_testing_mdoels %}
<h3>{{test_model.prop}}</h3>
{% endfor %}
<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js" integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js" integrity="sha384-9/reFTGAW83EW2RDu2S0VKaIzap3H66lZH81PoYlFhbGU+6BZp6G7niu735Sk7lN" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.1/js/bootstrap.min.js" integrity="sha384-XEerZL0cuoUbHE4nZReLT7nx9gQrQreJekYhJD9WNWhH8nEW+0c5qq7aIo2Wl30J" crossorigin="anonymous"></script>
</body>
</html>
我的目标是创建一个数据集(训练+测试集)以使用pytorch resnet训练我的模型。 我有一个错误,我不知道如何解决它,因为我不太了解DataLoader结构,所以我尝试了以下方法:
我有这个:
data
|_ classe1
|_ image1
|_ image2
|_ classe2
|_ ...
但是当我尝试运行模型时,出现此错误:
dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['data']}
batch_size = 32
validation_split = .3
shuffle_dataset = True
random_seed= 42
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle_dataset :
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=valid_sampler)
dataloaders_dict = {'train': train_loader, 'val': validation_loader}
有什么建议吗?是否检测到任何错误?
答案 0 :(得分:0)
问题很可能来自您的第一行,其中您的dataset
实际上是包含一个元素(pytorch数据集)的字典。这样会更好:
x = 'data'
dataset = datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
我假设data_transforms['data']
是预期类型的转换(详细介绍here)。
当pytorch尝试从仅包含一个元素的“数据集”(字典)获取张量时,可能会产生keyerror。
顺便说一句,我认为pytorch提供了torch.utils.data.random_split`功能,因此您不必自己进行训练/测试拆分。您可能要查找它。