因此,我试图为数据帧创建一个新列,该数据帧本质上在mfi超过70时为1,而在mfi超过70时为0。到目前为止的代码是:
import pandas as pd
import numpy as np
#get stock prices
d = pd.read_csv(r"C:\Users\B1880\Downloads\AMD_stock_data\AMD_2020_2020.txt")
d.columns = ['Dates', 'Open', 'High', 'Low', 'Close', 'Volume']
d.set_index(d['Dates'], inplace=True)
d.drop(['Dates'], axis=1, inplace=True)
#MONEY FLOW INDEX
d['typical_price'] = (d['High'] + d['Low'] + d['Close'])/3
d['raw_money_flow'] = d['typical_price']*d['Volume']
mf = d.raw_money_flow.diff(1)
p = mf.copy()
n = mf.copy()
p[p<=0] = 0
n[n>0] = 0
pmf = p.rolling(window=14).mean()
nmf = abs(n.rolling(window=14).mean())
mfr = pmf / nmf
d['mfi'] = 100 - (100 / (mfr +1))
d['mfi'].dropna(inplace=True)
# # #mfi location
d['mfi_70_overbought'] = np.where(d['mfi'] > 70, 1, 0)
d['mfi_70_overbought']
当我像这样运行代码时,出现错误ValueError: Length of values does not match length of index
,并且为了解决这个问题,我做了d['mfi_70_overbought'] = pd.Series(np.where(d['mfi'] > 70, 1, 0))
。尽管现在当我打印d['mfi_70_overbought']
列时,整个列都填充有NAN值。鉴于MFI的价值肯定超过70,我想念什么?谢谢!
编辑:这是d ['mfi']打印输出的内容:
Dates
2010-01-04 07:18:00 NaN
2010-01-04 07:23:00 NaN
2010-01-04 07:29:00 NaN
2010-01-04 07:38:00 NaN
2010-01-04 07:44:00 NaN
...
2019-12-31 19:55:00 54.775561
2019-12-31 19:56:00 49.240351
2019-12-31 19:57:00 54.346136
2019-12-31 19:58:00 86.883785
2019-12-31 19:59:00 50.210623
Name: mfi, Length: 1293557, dtype: float64
数据的网址为:https://docs.google.com/spreadsheets/d/1uxVjEJkEmDZwu44pNxsg5ZBonqbTFak8HoESbxo0AM0/edit?usp=sharing
答案 0 :(得分:1)
# necessary imports
import pandas as pd
import numpy as np
试图重现您所做的事情
模拟数据:
data = {'timestep1': [45,46,47,48,1000],
'timestep2': [46,47,48,49,2020],
'timestep3': [47,48,49,50,1002],
'timestep4': [50,49,48,47, 99],
'timestep5': [45,40,50,70,2500]}
名称列,设置索引:
df = pd.DataFrame.from_dict(data, orient='index')
df.columns = ['Open', 'High', 'Low', 'Close', 'Volume']
df.index.name = 'Dates'
进行计算:
df['typical_price'] = (df['High'] + df['Low'] + df['Close'])/3
df['raw_money_flow'] = df['typical_price']*df['Volume']
mf = df.raw_money_flow.diff(1)
p = mf.copy()
n = mf.copy()
p[p<=0] = 0
n[n>0] = 0
windowsize=2 # example value
pmf = p.rolling(window=windowsize).mean()
nmf = abs(n.rolling(window=windowsize).mean())
mfr = pmf/nmf
df['mfi'] = 100 - (100 / (mfr +1))
df['mfi'].dropna(inplace=True)
现在,如果我运行df['mfi_70_overbought'] = np.where(df['mfi'] > 70, 1, 0)
,则会收到相同的错误:ValueError: Length of values does not match length of index
如果您只想创建一个新列,当mfi超过70时为 1,否则为0 ,则可以避免使用numpy
并使用{{1 }}工具。
定义一个函数,如果其输入大于pandas
,则返回1
,否则应返回70
:
0
Apply到def above70(num):
return int(num > 70)
:
df[mfi]
在我的示例中,新列将如下所示:
df['mfi'].apply(above70)
此新列比原始数据帧的列短(差异为Dates
timestep3 0
timestep4 0
timestep5 1
Name: mfi, dtype: int64
),因为以前我们已经应用了rolling
和dropna
。如果您想将其附加到数据框上,请填充此列,或者不执行使该列更短的步骤。