如何基于另一个NumPy数组的值创建NumPy数组?

时间:2020-07-29 02:22:52

标签: python numpy

我想创建一个NumPy数组。它的元素值取决于另一个NumPy数组中元素的值。目前,我必须在列表理解中使用for循环来遍历数组a以获得b。 NumPy的实现方法是什么?

测试脚本:

import numpy as np

def get_b( a ):
    b_dict = {  1:10., 2:20., 3:30. }
    return b_dict[ a ]

a = np.full( 10, 2 )
print( f'a = {a}' )
b = np.array( [get_b(i) for i in a] )
print( f'b = {b}' )

输出:

a = [2 2 2 2 2 2 2 2 2 2]
b = [20. 20. 20. 20. 20. 20. 20. 20. 20. 20.]

4 个答案:

答案 0 :(得分:1)

您可以使用np.vectorize将字典值映射到数组

In [6]: b_dict = {  1:10., 2:20., 3:30 }

In [7]: a = np.full( 10, 2 )

In [8]: np.vectorize(b_dict.get)(a)
Out[8]: array([20., 20., 20., 20., 20., 20., 20., 20., 20., 20.])

答案 1 :(得分:1)

使用mapnp.fromiter怎么样?

def get_b( a ):
    b_dict = {  1:10., 2:20., 3:30. }
    return b_dict[ a ]

a = np.full( 10, 2 )
b = np.fromiter(map(get_b, a), dtype=np.float64)

编辑1 :小时间比较:

%timeit np.array( [get_b(i) for i in a] )
5.58 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

%timeit np.fromiter(map(get_b, a), dtype=np.float64)
5.77 µs ± 177 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

%timeit np.vectorize(b_dict.get)(a)
12.9 µs ± 76.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

编辑2 :似乎该示例太小:

a = np.full( 1000, 2 )

%timeit np.array( [get_b(i) for i in a] )
415 µs ± 9.13 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit np.fromiter(map(get_b, a), dtype=np.float64)
383 µs ± 2.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit np.vectorize(b_dict.get)(a)
68.6 µs ± 625 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

答案 2 :(得分:1)

另一种解决方法:

from operator import itemgetter
np.array(itemgetter(*a)(b_dict))

输出:

[20., 20., 20., 20., 20., 20., 20., 20., 20., 20.]

比较

#@kmundnic solution
def m1(a):
  def get_b(x):
    b_dict = {  1:10., 2:20., 3:30. }
    return b_dict[x]
  return np.fromiter(map(get_b, a),dtype=np.float)

#@bigbounty solution
def m2(a):
  b_dict = {  1:10., 2:20., 3:30. }
  return np.vectorize(b_dict.get)(a)

#@Ehsan solution
def m3(a):
  b_dict = {  1:10., 2:20., 3:30. }
  return np.array(itemgetter(*a)(b_dict))

#@Sun Bear solution
def m4(a):
  def get_b( a ):
    b_dict = {  1:10., 2:20., 3:30. }
    return b_dict[ a ]
  return np.array( [get_b(i) for i in a] )

in_ = [np.full( n, 2 ) for n in [10,100,1000,10000]]

对于小型词典,似乎 m2 在大型输入时最快,而 m3 对于小型输入。

enter image description here

对于更大的词典

b_dict = dict(zip(np.arange(100),np.arange(100)))
in_ = [np.full(n,50) for n in [10,100,1000,10000]]

m3 是最快的方法。您可以根据字典大小和键数组大小进行选择。

enter image description here

答案 3 :(得分:0)

我想强调对我的问题的评论@hpaulj的价值:

b_dict是否必须是字典?如果你有一个数组,例如。 ref = np.array([0, 10,20,30])可以按索引快速选择值, ref[a]在使用numpy时,我会尽量避免使用dict。

我发现,与尝试使用python dict相比,使用NumPy的索引将使性能提高几到几个数量级。

@Ehsan's solution为基础,下面是进行这种比较的脚本。

import numpy as np
from operator import itemgetter
import timeit
import matplotlib.pyplot as plt


#@kmundnic solution
def m1(a):
    def get_b(x):
        b = {  1:10., 2:20., 3:30. }
        #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
        return b[x]
    return np.fromiter(map(get_b, a),dtype=np.float)

#@bigbounty solution
def m2(a):
    b = {  1:10., 2:20., 3:30. }
    #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
    return np.vectorize(b.get)(a)

#@Ehsan solution
def m3(a):
    b = {  1:10., 2:20., 3:30. }
    #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
    return np.array(itemgetter(*a)(b))

#@Sun Bear solution
def m4(a):
    def get_b( a ):
        b = {  1:10., 2:20., 3:30. }
        #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
        return b[ a ]
    return np.array( [get_b(i) for i in a] )

#@hpaulj solution
def m5(a):
    b = np.array([10, 20, 30])
    #b = np.arange(10,1001,10) 
    return b[a]

        
sizes=[10,100,1000,10000]
pm1 = []
pm2 = []
pm3 = []
pm4 = []
pm5 = []
for size in sizes:
    a = np.full( size, 2 )
    pm1.append( timeit.timeit( 'm1(a)', number=1000, globals=globals() ) )
    pm2.append( timeit.timeit( 'm2(a)', number=1000, globals=globals() ) )
    pm3.append( timeit.timeit( 'm3(a)', number=1000, globals=globals() ) )
    pm4.append( timeit.timeit( 'm4(a)', number=1000, globals=globals() ) )
    pm5.append( timeit.timeit( 'm5(a)', number=1000, globals=globals() ) )

print( 'm1 slower than m5 by :',np.array(pm1) / np.array(pm5) )
print( 'm2 slower than m5 by :',np.array(pm2) / np.array(pm5) )
print( 'm3 slower than m5 by :',np.array(pm3) / np.array(pm5) )
print( 'm4 slower than m5 by :',np.array(pm4) / np.array(pm5) )

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot( sizes, pm1, label='m1' )
ax.plot( sizes, pm2, label='m2' )
ax.plot( sizes, pm3, label='m3' )
ax.plot( sizes, pm4, label='m4' )
ax.plot( sizes, pm5, label='m5' )
ax.grid( which='both' )
ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
ax.get_xaxis().set_label_text( label='len(a)', fontweight='bold' )
ax.get_yaxis().set_label_text( label='Runtime (sec)', fontweight='bold' )
plt.show()

结果:

len(b)= 3:

m1 slower than m5 by : [  4.22462367  29.79407905  85.03454097 339.2915358 ]
m2 slower than m5 by : [  8.64220685 11.57175871 13.76761749 46.1940683 ]
m3 slower than m5 by : [  3.25785432  21.63131578  54.71305704 220.15777696 ]
m4 slower than m5 by : [  4.60710166  30.93616607  91.8936744  371.00398273 ]

len(b)= 100:

m1 slower than m5 by : [  218.98603678  1976.50128737  9697.76615006 17742.79151719 ]
m2 slower than m5 by : [  41.76535891  53.85600913 109.35129345 164.13075291 ]
m3 slower than m5 by : [  24.82715462  36.77830986  87.56253196 141.04493237 ]
m4 slower than m5 by : [  222.04184193  2001.72120836  9775.22464369 18431.00155305 ]

comparisons