使用以下命令运行最新的docker
docker run -it -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root --NotebookApp.allow_origin='https://colab.research.google.com'
代码:
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
给我:
2020-07-27 19:44:03.826149: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-07-27 19:44:03.826179: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (-1)
2020-07-27 19:44:03.826201: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] no NVIDIA GPU device is present: /dev/nvidia0 does not exist
我在Pop_OS 20.04上,尝试从Pop存储库和NVidia安装CUDA驱动程序。没有骰子。任何帮助表示赞赏。
运行
docker run --gpus all nvidia/cuda:10.0-base nvidia-smi
给我:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.05 Driver Version: 450.51.05 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce RTX 2080 On | 00000000:09:00.0 On | N/A |
| 0% 52C P5 15W / 225W | 513MiB / 7959MiB | 17% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
答案 0 :(得分:5)
根据文档here和here,在创建具有gpu支持的docker容器时,您必须添加“ gpus”参数。
因此,您应该像这样启动容器。 “ --gpus all”使主机上所有可用的gpu对容器可见。
docker run -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root --NotebookApp.allow_origin='https://colab.research.google.com'
您还可以尝试在tensorflow映像上运行nvidia-smi以快速检查容器上是否可以访问gpu。
docker run -it --rm --gpus all tensorflow/tensorflow:latest-gpu-jupyter nvidia-smi
在我的情况下,将退还给您。
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1070 Off | 00000000:07:00.0 On | N/A |
| 0% 45C P8 8W / 166W | 387MiB / 8116MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
如您所见,我正在运行较旧的nvidia驱动程序(440.100),因此我无法确认这是否可以解决您的问题。我也在Pop_OS 20.04上,除了docker以及依赖项和nvidia-container-toolkit之外,没有安装其他任何东西。
我也强烈建议在创建容器时避免使用最新标签,因为这可能会导致您在不知不觉中升级到较新的映像。带有版本编号的图像。
例如tensorflow / tensorflow:2.3.0-gpu-jupyter。