我收到以下错误,无法找出原因:
InvalidArgumentError: [_Derived_] Invalid input_h shape: [1,32,5] [1,26,5]
[[{{node CudnnRNN}}]]
[[sequential_11/lstm_11/StatefulPartitionedCall]] [Op:__inference_train_function_27562]
这是代码:
def build_and_fit_model(n_epochs = 10, neurons=5,
batch_size=32,
stateful=True):
layer = LSTM(neurons,
batch_input_shape=(batch_size, X_train.shape[1], X_train.shape[2]),
stateful=stateful)
model = Sequential()
model.add(layer)
model.add(Dense(1))
model.compile(loss='mean_squared_error',
optimizer='adam')
print(model.summary())
for i in range(n_epochs):
model.fit(X_train, y_train, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
return model
model = build_and_fit_model(stateful=True)
X_train的形状为(6522,30,1),y_train的形状为(6522,1)。
模型摘要为:
Model: "sequential_11"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_11 (LSTM) (32, 5) 140
_________________________________________________________________
dense_10 (Dense) (32, 1) 6
=================================================================
Total params: 146
Trainable params: 146
Non-trainable params: 0
_________________________________________________________________
None