我下面有一个数据框
df = pd.DataFrame({
'ID': ['James', 'James', 'James', 'James',
'Max', 'Max', 'Max', 'Max', 'Max',
'Park', 'Park','Park', 'Park',
'Tom', 'Tom', 'Tom', 'Tom'],
'From_num': [578, 420, 420, 'Started', 298, 78, 36, 298, 'Started', 28, 28, 311, 'Started', 60, 520, 99, 'Started'],
'To_num': [96, 578, 578, 420, 36, 298, 78, 36, 298, 112, 112, 28, 311, 150, 60, 520, 99],
'Date': ['2020-05-12', '2020-02-02', '2020-02-01', '2019-06-18',
'2019-08-26', '2019-06-20', '2019-01-30', '2018-10-23',
'2018-08-29', '2020-05-21', '2020-05-20', '2019-11-22',
'2019-04-12', '2019-10-16', '2019-08-26', '2018-12-11', '2018-10-09']})
是这样的:
ID From_num To_num Date
0 James 578 96 2020-05-12
1 James 420 578 2020-02-02
2 James 420 578 2020-02-01 # Drop the this duplicated row (ignore date)
3 James Started 420 2019-06-18
4 Max 298 36 2019-08-26
5 Max 78 298 2019-06-20
6 Max 36 78 2019-01-30
7 Max 298 36 2018-10-23
8 Max Started 298 2018-08-29
9 Park 28 112 2020-05-21
10 Park 28 112 2020-05-20 # Drop this duplicate row (ignore date)
11 Park 311 28 2019-11-22
12 Park Started 311 2019-04-12
13 Tom 60 150 2019-10-16
14 Tom 520 60 2019-08-26
15 Tom 99 520 2018-12-11
16 Tom Started 99 2018-10-09
每个'ID'(名称)中都有一些连续的重复值(忽略日期值),例如对于James的第1行和第2行,From_num均为420,与第9行和第10行相同,我希望删除第二个重复的行并保留第一行。我写了循环条件,但是它非常冗长且缓慢,我认为可能有更简便的方法,所以如果您有想法请帮忙。万分感谢。预期的结果是这样的:
ID From_num To_num Date
0 James 578 96 2020-05-12
1 James 420 578 2020-02-02
2 James Started 420 2019-06-18
3 Max 298 36 2019-08-26
4 Max 78 298 2019-06-20
5 Max 36 78 2019-01-30
6 Max 298 36 2018-10-23
7 Max Started 298 2018-08-29
8 Park 28 112 2020-05-21
9 Park 311 28 2019-11-22
10 Park Started 311 2019-04-12
11 Tom 60 150 2019-10-16
12 Tom 520 60 2019-08-26
13 Tom 99 520 2018-12-11
14 Tom Started 99 2018-10-09
答案 0 :(得分:1)
已经有点晚了,但这能满足您的要求吗?这样会丢弃连续的重复项,而忽略“日期”。
t = df[['ID', 'From_num', 'To_num']]
df[(t.ne(t.shift())).any(axis=1)]
ID From_num To_num Date
0 James 578 96 2020-05-12
1 James 420 578 2020-02-02
3 James Started 420 2019-06-18
4 Max 298 36 2019-08-26
5 Max 78 298 2019-06-20
6 Max 36 78 2019-01-30
7 Max 298 36 2018-10-23
8 Max Started 298 2018-08-29
9 Park 28 112 2020-05-21
11 Park 311 28 2019-11-22
12 Park Started 311 2019-04-12
13 Tom 60 150 2019-10-16
14 Tom 520 60 2019-08-26
15 Tom 99 520 2018-12-11
16 Tom Started 99 2018-10-09
这将删除索引值为2和10的行。
答案 1 :(得分:0)
在我看来,DataFrame.drop_duplicates
正是这么做的,默认情况下,它会保留第一次出现的内容,而将其余的保留下来
unique_df = df.drop_duplicates(['ID', 'From_num', 'To_num'])
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html
编辑
正如问题中提到的,只有连续的行应该被处理,为此,我建议先对其进行标记,然后在已标记的行的子集上运行drop_duplicates(我不确定这是否是最佳解决方案)>
df['original_index'] = null
indices = df.index[1:]
for i in range(1, indices):
# if current row equals the previous one
if df.loc[indices[i - 1], 'ID'] == df.loc[indices[i], 'ID'] and df.loc[indices[i -1], 'From_num'] == df.loc[indices[i], 'From_num'] and df.loc[indices[i -1], 'To_num'] == df.loc[indices[i], 'To_num']:
# get the original index if it has been already set on row index -1
if df.loc[indices[i - 1], 'original_index'] not null:
df.loc[indices[i], 'original_index'] = df.loc[indices[i - 1], 'original_index']
else:
# else set it to be current index for both rows
df.loc[indices[i - 1], 'original_index'] = indices[i - 1]
df.loc[indices[i], 'original_index'] = indices[i - 1]
现在我们将列“ original_index”添加到drop_duplicates
unique_df = df.drop_duplicates(['ID', 'From_num', 'To_num', 'original_index'])
答案 2 :(得分:0)
比较下面的行和上面的行,将布尔值求反即可得到结果:
cond1 = df.ID.eq(df.ID.shift())
cond2 = df.From_num.eq(df.From_num.shift())
cond = cond1 & cond2
df.loc[~cond].reset_index(drop=True)
替代:更长的路线:
(
df.assign(
temp=df.groupby(["ID", "From_num"]).From_num.transform("size"),
check=lambda x: (x.From_num.eq(x.From_num.shift())) &
(x.temp.eq(x.temp.shift())),
)
.query("check == 0")
.drop(["temp", "check"], axis=1)
)
答案 3 :(得分:-1)
df.groupby(['ID', 'From_num', 'To_num']).first().reset_index()
编辑-这将删除重复项,即使它们不是连续的。例如原始df中的第4和第7行。
更新
cols=['ID', 'From_num', 'To_num']
df.loc[(df[cols].shift() != df[cols]).any(axis=1)].shape