#retrieve特定赛季的意甲(1个意甲,1个平局)由于 #另外2个) teamHomeResultsW_s = grp_by_HT.get_group(team)['HW'] teamAwayResultsW_s = grp_by_AT.get_group(team)['AW'] teamResultsW_s = pd.concat([teamHomeResultsW_s,teamAwayResultsW_s])。sort_index()
teamHomeResultsD_s = grp_by_HT.get_group(team)['D']
teamAwayResultsD_s = grp_by_AT.get_group(team)['D']
teamResultsD_s = pd.concat([teamHomeResultsD_s, teamAwayResultsD_s]).sort_index()
#(i) compute 7_HTW_rate, 12_HTW_rate, 7_HTD_rate, 12_HTD_rate, 7_ATW_rate, 12_ATW_rate, 7_ATD_rate, 12_ATD_rate --> 8 features
win7TeamResultsW_d = pd.rolling_mean(teamResultsW_s.shift(1), window = 7, min_periods = 5).to_dict()
win12TeamResultsW_d = pd.rolling_mean(teamResultsW_s.shift(1), window = 12, min_periods = 8).to_dict()
win7TeamResultsD_d = pd.rolling_mean(teamResultsD_s.shift(1), window = 7, min_periods = 5).to_dict()
win12TeamResultsD_d = pd.rolling_mean(teamResultsD_s.shift(1), window = 12, min_periods = 8).to_dict()
E0_data.loc[teamHomeResultsW_s.index,'7_HTW_rate'] = E0_data.loc[teamHomeResultsW_s.index,:].index.map(lambda x : win7TeamResultsW_d[x])
E0_data.loc[teamHomeResultsW_s.index,'12_HTW_rate'] = E0_data.loc[teamHomeResultsW_s.index,:].index.map(lambda x : win12TeamResultsW_d[x])
E0_data.loc[teamAwayResultsW_s.index,'7_ATW_rate'] = E0_data.loc[teamAwayResultsW_s.index,:].index.map(lambda x : win7TeamResultsW_d[x])
E0_data.loc[teamAwayResultsW_s.index,'12_ATW_rate'] = E0_data.loc[teamAwayResultsW_s.index,:].index.map(lambda x : win12TeamResultsW_d[x])
E0_data.loc[teamHomeResultsD_s.index,'7_HTD_rate'] = E0_data.loc[teamHomeResultsD_s.index,:].index.map(lambda x : win7TeamResultsD_d[x])
E0_data.loc[teamHomeResultsD_s.index,'12_HTD_rate'] = E0_data.loc[teamHomeResultsD_s.index,:].index.map(lambda x : win12TeamResultsD_d[x])
E0_data.loc[teamAwayResultsD_s.index,'7_ATD_rate'] = E0_data.loc[teamAwayResultsD_s.index,:].index.map(lambda x : win7TeamResultsD_d[x])
E0_data.loc[teamAwayResultsD_s.index,'12_ATD_rate'] = E0_data.loc[teamAwayResultsD_s.index,:].index.map(lambda x : win12TeamResultsD_d[x])
#(ii) compute 5_HTHW_rate and 5_ATAW_rate
win5TeamResultsHomeW_d = pd.rolling_mean(teamHomeResultsW_s.shift(1), window = 5, min_periods = 3).to_dict()
win5TeamResultsAwayW_d = pd.rolling_mean(teamAwayResultsW_s.shift(1), window = 5, min_periods = 3).to_dict()
E0_data.loc[teamHomeResultsW_s.index,'5_HTHW_rate'] = E0_data.loc[teamHomeResultsW_s.index,:].index.map(lambda x : win5TeamResultsHomeW_d[x])
E0_data.loc[teamAwayResultsW_s.index,'5_ATAW_rate'] = E0_data.loc[teamAwayResultsW_s.index,:].index.map(lambda x : win5TeamResultsAwayW_d[x])
AttributeError:win7TeamResultsW_d = pd.rolling_mean(teamResultsW_s.shift(1),window = 7,min_periods = 5).to_dict()中的模块“ pandas”没有属性“ rolling_mean” >