我想在Tensorflow 2.0后端在Keras中实现YOLO-tiny。我想制作一个新的自定义YoloLayer,它对上一层的输出执行非最大抑制,并使张量的形状为(batch_size, num, 6)
,其中num
是找到的多个预测,每个预测表示为{ {1}}。我还在[x, y, w, h, prob, class]
方法中设置了self.trainable = False
。这是我的__init__()
方法:
call
然后,def call(self, inputs, **kwargs):
predictions = inputs[...,:5]
x = tf.math.add(self.cols, tf.nn.sigmoid(predictions[...,0])) / self.grid_size # x
y = tf.math.add(self.rows, tf.nn.sigmoid(predictions[...,1])) / self.grid_size # y
w = tf.multiply(self.anchors_w, tf.math.exp(predictions[...,2])) / self.grid_size # w
h = tf.multiply(self.anchors_h, tf.math.exp(predictions[...,3])) / self.grid_size # h
c = tf.nn.sigmoid(predictions[...,4]) # confidence
bounds = tf.stack([x, y, w, h], -1)
classes = inputs[...,5:]
probs = tf.multiply(tf.nn.softmax(classes), tf.expand_dims(c, axis=-1))
prob_mask = tf.greater(probs, self.threshold)
suppressed_indices = tf.where(prob_mask)
suppressed_probs = tf.gather_nd(probs, suppressed_indices[...,:3])
suppressed_boxes = tf.gather_nd(bounds, suppressed_indices[...,:3])
box_coords = tf.stack([
suppressed_boxes[...,1] - suppressed_boxes[...,3] / 2., #y1
suppressed_boxes[...,0] - suppressed_boxes[...,2] / 2., #x1
suppressed_boxes[...,1] + suppressed_boxes[...,3] / 2., #y2
suppressed_boxes[...,0] + suppressed_boxes[...,2] / 2., #x2
], axis=-1)
out = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
for i in range(tf.shape(inputs)[0]):
image_out = tf.TensorArray(tf.float32, size=self.classes)
for c in range(self.classes):
class_probs = suppressed_probs[i,:,c]
indices = tf.image.non_max_suppression(box_coords[i], class_probs, 10,
iou_threshold=self.nms_threshold,
score_threshold=self.threshold)
if tf.size(indices) > 0:
final_probs = tf.expand_dims(tf.gather(class_probs, indices), axis=-1)
final_boxes = tf.gather(suppressed_boxes[i], indices)
class_vec = tf.ones((tf.shape(final_probs)[0], 1)) * c
image_out.write(c, tf.concat([final_boxes, final_probs, class_vec], axis=1))
image_out = image_out.concat()
out.write(i, image_out)
out = out.stack()
return out
返回:
model.summary()
我为此模型加载了预训练的权重并运行Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
...
_________________________________________________________________
yolo_layer (YoloLayer) (None, None, 6) 0
=================================================================
...
,但是输出给了我一个错误:
model.predict
我还运行了没有YoloLayer的该模型,并使用相同的功能但分开地修改了其输出,并且它的工作原理正确,但不包含占位符。我该怎么做才能做到这一点?
答案 0 :(得分:0)
好的,我自己发现了。所有要做的是:
outputs = outputs.write(out_idx, image_out)