通过烧瓶REST API使用tensforflow
我应该如何减少session.run
我在REST API中使用tf 1/2,而不是在服务器上使用它,而是在我的服务器上使用它。
我尝试了张量流1和2。
tensorflow 1需要太多时间。
tensorflow 2甚至没有返回文本的向量。
在张量流1中
初始化需要2-4秒,而session.run
则需要5-8秒。
而且随着我不断满足要求,时间越来越多。
tensorflow 1
import tensorflow.compat.v1 as tfo
import tensorflow_hub as hub
tfo.disable_eager_execution()
module_url = "https://tfhub.dev/google/universal-sentence-encoder-qa/3"
# Import the Universal Sentence Encoder's TF Hub module
embed = hub.Module(module_url)
def convert_text_to_vector(text):
# Compute a representation for each message, showing various lengths supported.
try:
#text = "qwerty" or ["qwerty"]
if isinstance(text, str):
text = [text]
with tfo.Session() as session:
t_time = time.time()
session.run([tfo.global_variables_initializer(), tfo.tables_initializer()])
m_time = time.time()
message_embeddings = session.run(embed(text))
vector_array = message_embeddings.tolist()[0]
return vector_array
except Exception as err:
raise Exception(str(err))
tensorflow 2
它停留在vector_array = embedding_fn(text)
import tensorflow as tf
import tensorflow_hub as hub
module_url = "https://tfhub.dev/google/universal-sentence-encoder-qa/3"
embedding_fn = hub.load(module_url)
@tf.function
def convert_text_to_vector(text):
try:
#text = ["qwerty"]
vector_array = embedding_fn(text)
return vector_array
except Exception as err:
raise Exception(str(err))
答案 0 :(得分:0)
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
module_url = "https://tfhub.dev/google/universal-sentence-encoder-qa/3"
embedding_fn = hub.load(module_url)
@tf.function
def convert_text_to_vector(text):
try:
vector_array = embedding_fn.signatures['question_encoder'](
tf.constant(text))
return vector_array['outputs']
except Exception as err:
raise Exception(str(err))
### run the function
vector = convert_text_to_vector(['is this helpful ?'])
print(vector.shape())
答案 1 :(得分:0)
from flask import Flask
from flask_restplus import Api, Resource
from werkzeug.utils import cached_property
import tensorflow as tf
import tensorflow_hub as hub
module_url = "https://tfhub.dev/google/universal-sentence-encoder-qa/3"
embedding_fn = hub.load(module_url)
app = Flask(__name__)
@app.route('/embedding', methods=['POST'])
def entry_point(args):
if args.get("text"):
text_term = args.get("text")
if isinstance(text_term, str):
text_term = [text_term]
vectors = convert_text_to_vector(text_term)
return vectors
@tf.function
def convert_text_to_vector(text):
try:
vector_array = embedding_fn.signatures['question_encoder'](tf.constant(text))
return vector_array['outputs']
except Exception as err:
raise Exception(str(err))
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)
"""
----- Requirements.txt ----
flask-restplus==0.13.0
Flask==1.1.1
Werkzeug==0.15.5
tensorboard==2.2.2
tensorboard-plugin-wit==1.6.0.post3
tensorflow==2.2.0
tensorflow-estimator==2.2.0
tensorflow-hub==0.8.0
tensorflow-text==2.2.1
"""