我正在用Pytorch处理线性回归问题。我使用的数据集是Kaggle的房屋价格。在训练模型时,我看到损失并未减少。它显示了一种不稳定的模式。这是我在100个时代之后所遭受的损失:
Epoch [10/100], Loss: 222273830912.0000
Epoch [20/100], Loss: 348813688832.0000
Epoch [30/100], Loss: 85658296320.0000
Epoch [40/100], Loss: 290305572864.0000
Epoch [50/100], Loss: 59399933952.0000
Epoch [60/100], Loss: 80360054784.0000
Epoch [70/100], Loss: 90352918528.0000
Epoch [80/100], Loss: 534457679872.0000
Epoch [90/100], Loss: 256064503808.0000
Epoch [100/100], Loss: 102400483328.0000
这是代码:
import torch
import numpy as np
from torch.utils.data import TensorDataset
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
inputs = normalized_X
targets = np.array(train_y)
# Tensors
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
targets = targets.view(-1, 1)
train_ds = TensorDataset(inputs, targets.squeeze())
batch_size = 5
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
model = nn.Linear(10, 1)
# Define Loss func
loss_fn = F.mse_loss
# Optimizer
opt = torch.optim.SGD(model.parameters(), lr = 1e-1)
num_epochs = 100
model.train()
for epoch in range(num_epochs):
# Train with batches of data
for xb, yb in train_dl:
# 1. Generate predictions
pred = model(xb.float())
# 2. Calculate loss
yb = yb.view(yb.size(0), -1)
loss = loss_fn(pred, yb.float())
# 3. Compute gradients
loss.backward()
# 4. Update parameters using gradients
opt.step()
# 5. Reset the gradients to zero
opt.zero_grad()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch +
1, num_epochs,
loss.item()))
答案 0 :(得分:1)
我已经运行了您提供的代码,但出现此错误:
p.py:38: UserWarning: Using a target size (torch.Size([50])) that is
different to the input size (torch.Size([50, 1])). This will likely lead
to incorrect results due to broadcasting. Please ensure they have the same size.
您的问题是由于pred
和yb
之间的尺寸不同。
此代码显示了解决方法
import torch
import numpy as np
from torch.utils.data import TensorDataset
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
inputs = np.random.rand(50, 10)
targets = np.random.randint(0, 2, 50)
# Tensors
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
train_ds = TensorDataset(inputs, targets.squeeze())
batch_size = 100
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
model = nn.Linear(10, 1)
# Define Loss func
loss_fn = F.mse_loss
# Optimizer
opt = torch.optim.SGD(model.parameters(), lr = 1e-1)
num_epochs = 100
model.train()
for epoch in range(num_epochs):
# Train with batches of data
for xb, yb in train_dl:
# 1. Generate predictions
pred = model(xb.float())
# 2. Calculate loss
yb = yb.view(yb.size(0), -1)
loss = loss_fn(pred, yb.float())
# 3. Compute gradients
loss.backward()
# 4. Update parameters using gradients
opt.step()
# 5. Reset the gradients to zero
opt.zero_grad()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch +
1, num_epochs,
loss.item()))
答案 1 :(得分:0)
我之前的评论无效,因此我将其删除。您的示例代码按预期工作。您要根据独立随机变量预测随机变量。没有模式,这就是为什么它不收敛。