我想将完整的猫和狗数据集下载到我的PC上,并具有实际的jpg文件。我可以直接从例如下载Microsoft,但是我想使用tfds.load数据集函数。
当我尝试时:
(raw_train, raw_validation, raw_test), metadata = tfds.load(
'cats_vs_dogs',
split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],
with_info=True,
as_supervised=True,
data_dir=r'D:\TFProjects\catsdogscompl')
它确实下载了一些内容,但是这些是TFRECORD文件,而不是jpg。如何获得实际的jpg?
答案 0 :(得分:1)
TFDS实际上返回tf.data.Dataset。如主页上所述
所有数据集都以tf.data.Datasets形式公开,从而启用了易于使用和高性能的输入管道。
但是您实际上可以加载数据集并将其手动保存在jpeg中。
import tensorflow as tf
import tensorflow_datasets as tfds
from uuid import uuid1
import os
import warnings
(raw_train, raw_validation, raw_test), metadata = tfds.load(
'cats_vs_dogs',
split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],
with_info=True,
data_dir=r'D:\TFProjects\catsdogscompl')
def save_dataset_as_jpegs(dataset, path,):
"""
saves every image to the 'path' using random name + target
:param dataset: dataset you want to save
:param path: where you want to store it
:param metadata: metadata from dataset. required to get class names.
:return: Nothing. Just saves the dataset as jpegs.
"""
for obj in dataset:
im, name = obj['image'], obj['image/filename']
serialized_im = tf.image.encode_jpeg(im)
path_and_name = os.path.join(path, name.numpy().decode())
tf.io.write_file(path_and_name, serialized_im)
save_dataset_as_jpegs(raw_train, 'jpegs_train/')
save_dataset_as_jpegs(raw_validation, 'jpegs_validation/')
save_dataset_as_jpegs(raw_test, 'jpegs_test/')
此代码将raw_test数据集保存到jpegs_test文件夹中。